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Synopsis
A study is made of the resolvent operator for a system consisting of any 

finite number of particles. It is assumed that all the forces in the system arise 
from square-integrable local two-body interactions. The resolvent is considered 
for complex energies not in the continuous spectrum of the Hamiltonian. It is 
represented by an integral operator, the kernel of which is called the Green func
tion. In the energy plane cut along the positive real axis, the Green function G(2) 
for a system of two particles is obtained from an integral equation. Owing to the 
assumption on the interaction, this equation has a Hilbert-Schmidt kernel. As a 
result it can be solved by the Fredholm method. With G(2) as a supposedly known 
quantity, an integral equation for G(3) is constructed which again has a Hilbert- 
Schmidt kernel, and hence is again soluble. Next the procedure is extended to 
successively larger systems. For n particles, an integral equation is found from 
which the Green function G(«) can be obtained once the functions G(2), G(3),..., G(*  -1) 
are known. By an induction argument an upper bound is derived for the Schmidt- 
norm of each successive kernel Z<(«). This is shown to be finite at every interior 
point of the energy plane cut along the continuous spectrum of the n-particle 
Hamiltonian H(n). In the cut plane the Fredholm expressions converge irrespective 
of the strength of the interaction. The Green function G(«) is regular except for 
the cut and for possible poles on the negative real axis. These correspond to bound 
states, the eigenfunctions of Il(n) following directly from the residues of G(«). 
The present method does not give information on the behaviour of the Green 
function in the neighbourhood of the continuous spectrum. This is the subject of 
a forthcoming paper on the theory of scattering.

PRINTED IN DENMARK
BIANCO LUNOS BOGTRYKKERI A/S
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1.1. Introduction

This is the first of a series of papers concerned with various general properties 
of systems of n particles governed by Hamiltonians of the form

n

H\X)= (1.1.1)
<=1 1 i<j

In eq. (1.1.1) Xt = (Xn, Xi2, Xi3) is the space coordinate of particle i. The three 
components of Xt range from - æ to œ. The system is not enclosed in a finite box, 
neither are periodic boundary conditions imposed. The symbol Zl stands for the 
Laplace operator.

The masses of the particles are denoted by It is assumed that mi + 0. The 
various masses may or may not be equal. The particles are treated as distinguishable. 
It has been checked that the results of the present paper allow a simple specialization 
in the case of identical particles, but this point is not pursued here.

In each particular system, the number of particles is kept fixed. No use is made 
of creation and destruction operators and the techniques associated with these. There 
are thus distinct problems for n = 1,2,3,.... Only finite values of n are considered.

The two-body interaction Vi} is taken to be real. It is assumed that

hv„(X)]2d3X<«>. (1.1.2)
—oo

This means, roughly, that at the origin Vi} must be less singular than | while 
at large distances it must tend to zero faster than | X|~i. The Coulomb interaction is 
therefore excluded, as are potentials with hard cores.

It is an important point that the relation (1.1.2) does not imply an assumption on 
the strength of the potential. The results of this and the following papers apply to 
weak and strong interactions alike, as they are based on methods which go beyond 
perturbation theory.

In tackling the problem of n particles, the most straightforward starting-point 
would seem to be the Schrôdinger equation

H'(X) ^(X) - E'F(X). (1.1.3)

Solving this for V7, one would expect that in the case of negative energy only certain 
discrete values of E are admitted, while for positive E the equation would admit of 
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a continuum of solutions which satisfy certain outgoing boundary conditions and 
thereby describe scattering states in which in suitable regions of configuration space 
the system behaves asymptotically as an assembly of free subsystems. It is of course 
known that this program works quite well for a system of two particles with spheri
cally symmetric interaction. It must be borne in mind, however, that in this case the 
success of the method is due to the Schrödinger equation being separable into ordinary 
differential equations for which methods of solution are readily available. As soon 
as one passes on to three or more particles, one is always left with partial differential 
equations. Now, the properties of such equations are quite different from those of 
ordinary differential equations. As a matter of fact, one does not even have an ex
istence theorem to guarantee that for more-particle systems the desired scattering 
solutions can actually be found.

It is for this reason that we do not want to go into the question of scattering wave
functions. In the following the Hamiltonian (1.1.1) is considered as an operator 
which acts on square-integrable functions of X, and the n-body problem is approached 
from the point of view of the theory of Hilbert space. This does not only make it 
possible to put the formalism on a firm mathematical basis, it also makes available 
some very powerful computational methods.

One of our principal tools is the resolvent of the Hamiltonian and the Green func
tion G associated with it. As is usual, the resolvent is studied as an analytic function 
of the energy in the complex plane cut along the real axis from a point M to ». At 
every interior point of the cut plane, we find the Green function for any finite number 
of particles. To achieve this, we observe first of all that in the cut plane the two- 
particle Green function G^ satisfies an integral equation with a Hilbert-Schmidt 
kernel. Since such an equation is known to be soluble by the methods of the Fredholm 
theory of integral equations, we can find G(2). It takes the form of a quotient of two 
series, which are convergent owing to the assumption (1.1.2) that the interactions 
Vi; are square-integrable. The Green function G(2) is now used as a supposedly known 
quantity in an integral equation for the three-particle function G(3). The point is here 
that this equation is set up in such a way that it has a Hilbert-Schmidt kernel once 
again. As a result of this, it can be solved rigorously by the same method as that 
applied to G(2). Next, G<2> and G(3) are entered into an equation for G(4), and so on. 
Summarizing, there is an iteration procedure whereby the Green function G(n>> for any 
number of particles can be found once the functions for m = 2, 3, . . ., n - 1
are known. This method of constructing the Green function leads in a natural way 
to the energies and the wave-functions of bound states. It forms the main contents 
of the present paper.

In forthcoming papers we shall outline a general theory of scattering, with special 
emphasis on the channel concept and on sufficient conditions on the interaction to 
guarantee that a useful scattering formalism can indeed be developed. The next 
step consists in defining the S-operator, and expressing it in terms of the Green func
tion. The most intricate point to be discussed in this connection concerns the limiting 
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properties of the Green function as the energy tends to the cut in the complex plane. 
This limiting behaviour will be shown to be intimately connected with the asymptotic 
properties of wave-packets at large times, and with the falling-off of the interaction 
at large distances.

Up to this stage, the formalism is completely general, being capable of describing 
scattering and reactions among any number of particles or bound fragments. The 
remaining part of the investigation is devoted to the special case in which both in the 
distant past and in the remote future the total scattering system is split up into not 
more than two subsystems. For this case, results will be presented on the analytic 
properties of scattering amplitudes for fixed momentum transfer, and on dispersion 
relations. This part of the work also gives information on the asymptotic behaviour 
of wave-functions for bound states. The last item to be discussed is the scattering of 
partial waves, for which a new type of resonance formula will be given. The principal 
feature is here that, along with the well-known Breit-Wigner behaviour in the neigh
bourhood of an isolated resonance, we find an energy-dependent scattering radius 
which through a dispersion relation is connected with the absorption.

1.2. The Hamiltonian
1.2.1. Coordinates

In treating the Hamiltonian (1.1.1) it is useful to go over from the coordinates X 
to new coordinates x so that the energy of the centre-of-mass motion is separated off. 
This can easily be achieved in various ways, one possibility being the choice (1)

-, n - 1),

1/2 n xn = /T ËmlX!’ (1-2.1)

Mk = Sm1-
/-i

With this choice of coordinates, the kinetic-energy operator takes the form
n n
Tdrø.-Wtø, (1.2.2)
2 HU

i-1 1 Z=1

no mixed derivatives appearing. It follows from eq. (1.2.1) that

(></)
jt=l

with certain constants c depending on the masses of the particles.

(1.2.3)
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In eq. (1.2.1), xnis the coordinate of the centre of mass, apart from a scale factor. 
The coordinates xk (Å- = 1, 2 , . . ., n - 1) describe the internal motion. The Hamil
tonian of the internal motion takes the form

«'(») = (* 4) +Z (1-2-4)
i = 1 i < j \ fc = 1 /

Here, xq is proportional to the distance between particles 2 and 1, x2 to the distance 
between particle 3 and the centre of mass of 2 and 1, and so on. It is easily checked 
that an alternative system without mixed derivatives in the kinetic energy can be 
obtained as follows (1). First the system of n particles is split into k subsystems. In 
each subsystem internal coordinates are introduced according to eq. (1.2.1). Next, a 
coordinate is used for the distance between the centres of mass of the groups 2 and 1, 
then a coordinate for the distance between the centres of mass of group 3 and the 
combined groups 2 and 1, and so on. This takes n-k internal coordinates and A’-l 
relative coordinates between the k groups, so that just one coordinate is left for the 
centre of mass of the system as a whole. In the following we use all the coordinate 
systems of this sort, as the need arises.

1.2.2. Self-adjointness

We now want to consider H'(x) as an operator in the Hilbert space of square- 
integrable functions of x. This space is denoted by S2. In cases of ambiguity we may 
occasionally write £2(x). For the norm and the inner product in £2 we use the nota
tions

x

Il/'ll = [jj I /’C*)  l2^ » (9>f) = ^9(.x)f(x)dx. (1.2.5)

It is assumed that the reader is familiar with the basic ideas of the theory of Hilbert 
space, which can be found in the textbooks by Achieser and Glasmann(2), Riesz 
and Sz.-Nagy(3), Stone(4), and others.

To get the full benefit of the techniques of Hilbert space, we must define our 
Hamiltonian more carefully than is implied by eq. (1.2.4). As it stands there, it is 
too vague, because there does not seem to be a satisfactory criterion for determining 
the set of functions in £2 on which a differential operator can be allowed to act. The 
way out of this difficulty was indicated by Kato (5) and Stummel(6). First the domain 
of the differential operator was restricted to a dense set in S2 consisting of smooth 
functions which at infinity tend to zero sufficiently rapidly. The operator thus defined 
is hermitian, but it is not self-adjoint. It was shown, however, that under certain 
assumptions on the interaction it is essentially self-adjoint, i. e. that it has one and 
only one self-adjoint extension. It is this self-adjoint extension which we take as our 
Hamiltonian. It is denoted by H or by H(x). The domain of H is denoted by ®(/f).
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Let us write the differential operator H'(x) as the sum of the kinetic energy and 
the interaction,

H'(x) = Ho(x)+V(x). (1.2.6)

Then, a sufficient condition for essential self-adjointness given by Stummel(6) is

[T(x-y)]2 |xr3n + 7-ad3x1 d3x2.. . d3xn_1<C, 
l*l<i

1*1  “ (I *1  I2 + I *2  I2 + • ■ ■ + I *n-l  I2)’.
(1-2.7)

for every j, some constant C, and a suitable a>0. This is clearly fulfilled in the present 
case. For let us take V12. If n>3, it satisfies

i [Vi2(4(* 1-y1))]2l*l “3,,+’’“d3*1 d3x2. ■

> I » I s 1

S
oo #

[^12(^12 Oi ->>1))N3*1  \ (|X212+ ... + I xn_1 |2)~*  w+^“d3x2 ... d3xn_1<C12 
‘)|x2|’ + . .+ |xn.1|,< 1

(1.2.8)

provided a<l, by virtue of the condition (1.1.2) on V^. If n = 2, the same holds 
true by an even simpler argument. By a permutation among the coordinates, similar 
bounds are readily derived for the remaining V^. The final result then follows from 
Schwarz’s inequality.

It follows from the paper by Kato(5) that Hq(x) has a unique self-adjoint ex
tension Ho. If ®(f/0) stands for the domain of Ho, it was shown that for every f in 
2)(/f0) the quantity Vf belongs to Ö2. It was also shown that

$(H) = $(H0), //=//0+U. (1.2.9)

1.2.3. The resolvent

The importance of the Hamiltonian being self-adjoint derives from the fact that 
this implies that it has a resolvent and a spectral resolution. To the latter concept we 
come back later. Our first object is the resolvent jR(â) ,

/?(2) = (H-Â)"1, (1.2.10)

where Â is a complex number. The resolvent is defined for the set of points À for which 
it exists and is a bounded linear operator with domain £2. This certainly includes all 
non-real z (Achieser and Glasmann(2) section 43). It satisfies (ref. (2) section 44)

R(Ä)-R(ju.) = (A-//) tf(2) R(ju) = (2-^)P(/z) 7?(Â),

R*(X)  = Ä(Ä),

(1.2.11)

(1.2.12)

where the asterisk denotes the adjoint of an operator, and the bar the complex con
jugate of a number.
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Since Tî(Â)/’ belongs to ©(//) whenever f belongs to S2, eq. (1.2.9) shows that 
//0/?(z) and V7?(A) are bounded operators. It is therefore justified to write

V7?(2) = (Â-HO)7?(Â)+1. (1.2.13)

Applying /?0(Â), the resolvent of Ho, to both sides yields the equation

Z?0(Â)V/?(Â) = 7?0(Â) - /?(A). (1.2.14)

It is the main purpose of the present paper to show that in the case under in
vestigation the resolvent is an integral operator,

7J(A)/-(x) - j (1.2.15)

for every /"in S2 and almost every x, and to determine the kernel G. The function G 
is called the Green function. This agrees with the Green-function concept as used by 
Courant and Hilbert(7), and more recently by Titchmarsh(8). Loosely speaking, 
G satisfies

(H-A)G(x,j;2) = ô(x-y). (1.2.16)

In finding the Green function G^ for n particles, i. e. (3 n - 3)-dimensional x and y 
(n = 2, 3, . . .), our starting-point is the fact that in the case of no interaction it is 
known to exist and to have the form (Titchmarsh(8) section 13.7)

((/Ilx-j-l) (n-2,3,...), (1.2.17) 
4 L2%I x-y I 2 2

being the Hankel function of the first kind. If n = 2, this reduces to

G$y(x,y,X) =---- (1.2.18)
4?r I x — y J

Here and in the following, Å must always be restricted to

0<argÂ<27r, Im|/Ä>0. (1.2.19)

1.3. The Green function for two particles
1.3.1. Method of construction

In determining the Green function, it is useful to start with two particles. The 
methods to be developed for this case are shown later to apply to larger numbers 
of particles without essential modification. Also, the results arc required for the general 
n-particle problem, as our approach to this involves an iteration procedure.
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For two particles, the relative motion depends on a three-dimensional vector x. 
The interaction consists of a single term which, for simplicity, is denoted by V(x). 
In the present section, all superscripts referring to the number of particles are dropped.

If f is any function in ß2, the functions

h(«;A) - Ä(A)f(x), h0(x;A)-7{0(A)f(x) = Jco(x,j>;A)y(y)dj- (1.3.1) 

obviously belong to ß2. From the resolvent equation (1.2.14) together with our knowl
edge of 7?0(Â) contained in eqs. (1.2.15) and (1.2.18), it follows that

Ji (x; A) - A0(x; *)  - r-4—; V(y)h (y,X)dy. (1.3.2)
4 n j I x — y I

Denoting the kernel of this integral equation by K,

K(x,y;Ä) =--------------- le°/Â,x“5’1 V(j),
4yr | x -y |

we observe the important fact that, if Im|/2>0,

jjj I K(x,y.X) ?dx dy - j [ V( j-)]2dj jj V I e‘ |2dx 

1__
8tt Im |/Â

jj [V(y~)]2dy< »,

(1.3.3)

(1.3.4)

owing to the assumption that V is square-integrable, eq. (1.1.2). Kernels which are 
square-integrable in the sense of eq. (1.3.4) are known as completely continuous, or 
Hilbert-Schmidt kernels. In the following we denote the set of all Hilbert-Schmidt 
kernels by S2 or 82(x).

The importance of this set derives from the fact that for integral equations with 
kernels in £2 the solution is known. As a matter of fact, it follows from the works of 
Carleman(9), Smithies(10), and Miciilin(II) that with minor alterations the Fred
holm theory can be made applicable to these equations (see also Smithies (12) ch. VI, 
and Zaanen(13) ch. 9, section 17).

To make this clear, let us define

where
W'SW),

p = 0

D(x,y;2) = Dp(x, y ; Â), 
p = o

Zl0(2) = l, 2^(2) = 0, D0(x,y; Å) = K(x,y; 2),

(1.3.5)

=
HU(x,yu)op_2
p

(y, x; 2) dx dy (P>2), ►

Dp(x,y; 2) = dp(2)Æ(x,y;2) + \K(x,z; Å)I)p_1(z,y; Å) dz (p>l).

(1.3.6)
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It is then shown in the above references that if h0 belongs to £2 and À is such that 
d(Â) =4=0, the equation (1.3.2) with the kernel (1.3.3) has one and only one solution 
in ß2, which takes the form

If for any kernel in £2 we denote the £2-norm by

we have
\Apß)\<(e/p)^\K(ß\P (p>l).

(1.3.7)

(1.3.8)

(1.3.9)

This clearly shows that the series for A is convergent for all values of À for which 
I K(Â) I is finite, i.e. for all z with Im|/A>0 (cf. eq. (1.3.4)). It is to be noted that the 
convergence properties are independent of the absolute magnitude of the interaction
V. As for the series for D, it is known that each kernel Dp belongs to ß2,

|Op(A)|5|/e(e/p)â»|Æ(Â)|” + 1 (pil). (1.3.10)

From this it follows that D also belongs to S2, and that the series for I) converges in 
mean square.

In view of the expressions (1.3.1) for h and h0, equation (1.3.7) very strongly 
suggests that

/?(A)/(x) = \G0(x,z; Å) f(z)dz + <lz^D(x,y-, Å) G0(y,z; X)dy. (1.3.11)

If we can justify this, we have thereby established that the resolvent is an integral 
operator, and we have found an expression for its kernel, the Green function G,

(1.3.12)

The distinction between eqs. (1.3.7) and (1.3.11) is that in eq. (1.3.11) the integration 
with respect to y is performed first, while in eq. (1.3.7) this is done last. The problem 
is therefore to prove that in eq. (1.3.11) the integrations may be interchanged. To show 
this, let us first take any f and g in ß2. We know from eq. (1.2.12) that

so that
(g, R (A) O = (R*  (Â) g, f) = (R (Ä) g, f), (1.3.13)

9 (*)  dx jj G0(x,y; A) f(y) dy = jj f (y) dy jj G0(y, x ; Å) g (x) dx

= ^f(y) (iy^G0(x,y, ßg(x) dx,
(1.3.14)
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where use has been made of the symmetry properties

G0(x,y;X) = G0(y,x;X),

G0(x,y; À) = G0(x, y;Å),

(1.3.15)

(1.3.16)

which follow directly from the known expression for Go.
Equation (1.3.14) shows that with straightforward functions f and g the order 

of integration may indeed be inverted. For the more complicated case presented by 
eq. (1.3.11), we note that according to Fubini’s theorem (Burkill(14) section 5.4) 
D(x, y; 2) is square-integrable with respect to y for almost every x. The integrations 
may therefore be interchanged also in this case, for almost every x. From this observa
tion the desired equation (1.3.12) for the Green function now follows, as a set of 
points of measure zero is immaterial in a Hilbert-space formalism.

1.3.2. Symmetry
It is clear from the method of construction that

G (x, y ; 2) = G (x, y ; 2).
We now want to show that

G(x, y; 2) = G(y,x; 2).

(1.3.17)

(1.3.18)

This is already known to be true for the term Go appearing in G. Let us denote the 
second term in eq. (1.3.12) by F,

F (x, y ; 2) = 1
d(2)

( D(x, z; 2) G0(z,y; 2) dz. (1.3.19)

Then it is obvious that F belongs to S2, since D belongs to £2 and Go represents a bounded 
operator. Therefore,

ÇÇ \g(.x)F(x>y‘,^)f(y) I(lx dy

x,y ; 2) |2dx
(1.3.20)

so that by Fubini’s theorem

^(x) dx(r(x,j; 2) f(y) dy = {f(y)dy^F(x,y; 2)g(x) dx. (1.3.21)

But from eq. (1.3.13) and eqs. (1.3.16) and (1.3.17) we have

g(x) dxiF(x,y;Ä)f(y) dy = ( f(y) dy Ç F\y, x; 2) g (x) dx I
J J J (1.3.22)

= \f(y)dy\F(y>x'>*)g( x)dx- I
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In view of the arbitrariness of f and g in Û2 and the fact that F belongs to £2, this 
implies that

F(x, y; A) = F(y, x; Â), (1.3.23)

and from this we get eq. (1.3.18). In this argument use is made of the known inter
changeability of the integrals to establish the symmetry. Now that we have the sym
metry of the Green function, it follows, as in eq. (1.3.14), that

jp(x) dx^G(x,y;Å)f(y) dy = ^f(y) dy^G (x, y; F) g (x) dx. (1.3.24)

According to the resolvent equation (1.2.14), the Green function satisfies 

(g(x,z; 2)/(z) dz= \go(x,z; Å)f(z)dz - ( G0(x,y;X)V(y)dy\G(y,z; X)f(z)dz. (1.3.25) 

If it is now recalled that G0V belongs to £2, and if eq. (1.3.24) is taken into account, 
the argument used in the previous section to get eq. (1.3.11) shows that in eq. (1.3.25) 
the integrations with respect to y and z may be interchanged. This yields the kernel

- (G0(*,j»;A)V(^)G(j«,z;A)dj>,  (1.3.26)

which obviously belongs to Ji2. Likewise, the second term on the right-hand side of 
eq. (1.3.12) belongs to Ji2. Since both kernels give the same result when multiplied 
by /"(z) and integrated over z, the two kernels must be equal for almost every x and z. 
In other words, along with eq. (1.3.12) we have

G(x, z; x) = G0(x, z; Å) - ( G0(x,y, Â)V(j) G (y, z; A) dy. (1.3.27)
J

1.3.3. Analytic properties

We now pass on to a study of the analytic properties of D(x, y, 2) and A (Å) 
considered as functions of A. To this end, we first observe that, according to eqs. 
(1.2.11) and (1.2.12),

7?(H)/Ï|2 = (fi(A)/-,Ä(A)/) = (/■,7?(Ä)ßO)/-)

Denoting the norm of 7? (2) by ||/?(2) ||, we thus obtain

(1.3.28)

(1.3.29)

This is a useful bound for non-real Å. However, if there is no interaction the 
resolvent does not only exist oil' the real axis, it also exists, and is bounded, for negative 
real À. As a matter of fact, in the case of two particles we have
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ei V'Â|x-y|

4tï|x-j|
e-Im|/Â|x-y|

4 711 x -y I

g—Im l'À I x-z I

471 X - Z
I/O') I \f(z)\dxdydz

4tc I y'

g-Im |/Ä iy I g-Im J/Â |z'|

4711 Z I
I f(x-y') \\f(x-z')\dx dy' dz'

so that here
47T

g-Im/A|y| uni2

*oG)ll±
i

(im |/â)2

(1.3.30)

(1.3.31)

As we shall see later, this inequality applies also to larger numbers of particles. 
Another relation which follows directly from eq. (1.2.11) is

^(S,7?(A)/) - (S,ß(A)B(A)f). (1.3.32)

Extending this to higher derivatives yields the power series

(ff,Ä(A)n - Z(a-/0’(?.[kG‘)]’,+7). 
p = 0

which converges provided
|2-/z| H 7?(/z) H < 1,

(1.3.33)

(1.3.34)

and so certainly when z is inside the circle with centre // which is tangent to the real 
axis, by eq. (1.3.29). Clearly the left-hand side of eq. (1.3.33) is regular inside this 
circle, and by letting // take all non-real values, it follows that it is in fact regular for 
all non-real Â. With the additional information supplied by the bound (1.3.31) for 
||B0(2)||, it follows that (g, R0(Å)f) is even regular in a larger region, viz. inside the 
A-plane cut along the real axis from 0 to ».

For the purpose of our investigation of the functions D(x,y; Â) and zl(2), the 
foregoing is now extended to functions of the form (g, VB0(2)/’). The point is here 
that in general Vg does not belong to S2. However, let us choose a sequence f/^in £a 
such that VgN belongs to £2 for every N, while gN tends to g in mean square,

lim II 0^-0 II = 0. (1.3.35)
2V-> co

Such a sequence certainly exists. For since T(//o) is dense in S2, every g in £2 can 
be approximated in mean square by a sequence in ®(/70). And if gN is in ®(7/0), 
the function VgN belongs to £2, by eq. (1.2.9).

For every N, the result (1.3.33) yields the expansion

(V9ir>Ä„(A)/') - [R0(jW+1f).
p = 0

(1.3.36)
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Use can now be made of the relation

(.VgN,I<oa)f) - (gN,VR0WD (1-3.37)

and of the fact that is a bounded operator, again by eq. (1.2.9). Since VR0(â)
is bounded, it follows from eq. (1.3.35) that

Um(?w,W0(â)f) - (g,VR0O)f). (1.3.38)
2V->oo

Hence, both members of eq. (1.3.37) tend to a limit as N tends to », and so does 
each term on the right-hand side of eq. (1.3.36). Also, the convergence of the series 
in eq. (1.3.36) is uniform with respect to N whenever A satisfies eq. (1.3.34). Then the 
sum of the limits equals the limit of the sum. Summarizing, we thus get the result

(g,VR„Wf) - 2’G-/«)i,(!7,V[ä„(/<)]!’ + 7). (1-3.39)

which shows that (g, VR0(Â) /) is regular in the same region as (g, R0(X)f).
The argument is now easily extended to the case in which g itself is a function of 

Â, and is of the form R0(K)h or R0(Ä)Vh. By the previous result and eq. (1.2.12), 
each term of the series in eq. (1.3.39) is still regular, though more complicated than 
with Â-independent g. The series converges uniformly with respect to z in any closed 
region in which z satisfies eq. (1.3.34). From this it follows as before that the sum is 
regular in the A-plane cut from 0 to co. The same applies to general expressions of 
the form

(s,R0O)[VfioO)]7). 04WW) (? - o,i,2,...). (1.3.40)

Now by writing out the quantity

Dp(x,y;X)dy^G0(y,z; Å)f(z)dz (1.3.41)

with the help of eq. (1.3.6), it can be reduced to functions Jff(Â) and expressions of 
the first form (1.3.40). The latter being regular in a certain region of the Â-plane, we 
now turn to the functions JS(A). Let us take in particular

^(A) - -i^[G0(x,y;A)]2V(x)V(y)</x</y. (1.3.42)

Here we require the fact that the kernel G0V belongs to £2. By virtue of this, it can be 
developed in mean square in terms of a complete orthonormal set fq (x) (q = 1,2,...) 
in £2, according to

-Go(x,y;l)V0-) - £
t.r-l (1.3.43)



Nr. 8 17

In terms of the coefficients Kqr, the S2-norm of G0V equals

|GO(A)V| = é i m*)  i2
1
2

(1.3.44)
?,r=l

The function J2 takes the form

= -
iy;A?r(A)Ær?(Å).

Q,r-1
(1.3.45)

Equation (1.3.44) implies the convergence of the series on the right-hand side. 
In view of this, Schwarz’s inequality shows that the series for Zl2(Â) absolutely 
convergent, its partial sums not exceeding | Go (Â) V |2 /2 .

If we now consider in particular

(1.3.46)

we know from the foregoing that it is regular in the Â-plane cut along the real axis 
from 0 to oo, for the sum is confined to a finite number of terms, and each term is 
regular by our previous results. In other words, each function of the sequence (A) 
(AT = 1, 2, . . .) is regular. The sequence tends to d2(Â) as N tends to oo, and it is 
bounded uniformly in N in any region in which | G0(Â) V| is bounded, i.e. in any 
region in which Im^/l>£>0 (cf. eq. (1.3.4)). From this it follows by Vitali’s theorem 
(Titchmarsh(15) section 5. 21) that d2(A) ’s regular in the region Im|/Ä>0.

Combining various arguments presented in the foregoing we now easily see that 
each function /^(Â) is regular in the region Imp/Â>0, and that the same applies to 
the functions

g(x)dx^ f(z)dz\Dp(x,y;Å)G0(y,z;Å)dy. (1.3.47)

Taking into account the convergence properties of the series for A (Â) implied by 
eq. (1.3.9), a second application of Vitali’s theorem yields the result that A (A) is 
regular in the region Im |/I>0. The same applies to the sum with respect to p of all 
expressions (1.3.47). If we now recall the expression (1.3.12) for the Green function, 
we see that

(^,7?(2)/) = ^g(x)dx^G(x,z;Å)f(z)dz (1.3.48)

is regular in any region with Im |/Ä > 0 where A (A) does not vanish.
Obviously, the interest of this conclusion does not derive so much from what it 

says about the analytic behaviour of the resolvent olT the real axis. This already fol
lows from general principles (see the discussion following eq. (1.3.33)). The significant 
result is the information on the properties of the resolvent in the neighbourhood of

Mat. Fys. Skr. Dan Vid. Selsk. 2, no.8. 2 
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the negative real axis. This is by no means trivial, as it depends on the nature of the 
interaction. Whereas in general the resolvent of an arbitrary self-adjoint operator 
exists only for non-real A, we see here that in the case of two particles with square- 
integrable interaction it can be continued analytically across the negative real axis. 
As for the restriction that A (A) must not vanish, since A (Â) is regular, its zeros are 
isolated points. Hence they give rise only to poles of the resolvent. It is these poles to 
which we now direct our attention.

1.3.4. Bound states
It was remarked above that, if A (Â) has zeros, these give rise to poles of the resol

vent. However, we saw from eqs. (1.3.29) and (1.3.33) that the resolvent is regular 
off the real axis, so that the possible zeros of A (A.) must be confined to the real axis. 
In view of the regularity of A (Â), they cannot have an accumulation point in the region 
Im j/Ä>£>0, except perhaps the point at infinity. The latter possibility is easily ruled 
out, however, by the following argument. According to the resolvent equation (1.2.14), 
we formally have

(g.KØn-O./ioG)/) - Z(-l)p(3,[fi0(A)'zF’fioO)/')- (1.3.49)
P=1

In general this scries is not convergent. But if Im J/Ä is sufficiently large, it follows 
from eq. (1.3.4) that the S2-norm of A0V is sufficiently small,

|«O(A)V|<1 bmp>^J[V(x)]2rfxj. (1.3.50)

Under this condition, the series on the right-hand side of eq. (1.3.49) is easily shown 
to converge and to equal the left-hand side. It thus exhibits the resolvent as a bounded 
operator, also on the negative real axis. There can therefore be no poles in the neigh
bourhood of the point at infinity, which is what we wanted to show. Summarizing, 
we see that on that part of the negative real axis on which Im|/Ä>e>0, the function 
A (Â) may have a finite number of zeros at most.

Let us now choose a particular zero 2 = za, and let us assume that it is of order 
q. Then it follows from eq. (1.3.11) that, in the neighbourhood of Aa, the quantity 
(g, R(Å)f') can be expanded in a Laurent series the most singular term of which is 
proportional to (A-^)“3. Hence, in the expansion of (d/dÂ) {g, the most singu
lar term is proportional to (2-2a)_<z_1. But, according to eq. (1.3.32), it is also pro
portional to (z-za)^2?, so that ç = 1. The resolvent can therefore have only simple 
poles.

At this stage it is convenient to consider the function

P(x, z;Aa) = lim \ D(x, y; Àa) G0(y, z; Aa) dy, (1.3.51)
A{À) J
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which, according to eq. (1.3.12), is lhe ’’residue” of G(x, z; A) at A = ^a. From the 
symmetry relations for the Green function, eqs. (1.3.17) and (1.3.18), it follows that 
P is real, and that it satisfies

P(x, z; Âa) = P(z, x; Âa). (1.3.52)

Furthermore, P is a Hilbert-Schmidt kernel. By virtue of all this, P can be developed 
in mean square in a series of orthonormal eigenfunctions in £2 according to (Riesz 
and Sz.-Nagy(3) section 97)

00
P(x, z;Aa) = (1.3.53)

ff = l

(1.3.54)

Here the eigenvalues // are real, since P is hermitian. Hence, if cp is an eigenfunction 
corresponding to a certain eigenvalue /z, so is <p. The above series can therefore be 
arranged in such a way that the functions <pxq are all real. This will always be implied 
in the following, unless otherwise stated.

It is clear from eq. (1.3.12) that, if (</,P(A)/’) is expanded in a Laurent series in 
powers of its principal part takes the form

x,z;2a)/(z)dz. (1.3.55)

Hence, equating the most singular terms in the expansions of (d/dÂ) (g, R(Å)f) and 
(^,P(Â) 7?(A)/) yields

Ut» dx(p(x,z;Âa)/(z)cZz
< •

= - J (*)  dx jj P(x, y ; Àa) dy J P (y, z ; Àx) f (z) dz.
> (1.3.56)

In view of the arbitrariness of /and g in £2, this shows that — P represents a projec
tion. As a result the eigenvalues all satisfy gxq = — 1, the number of independent 
eigenfunctions is finite by eq. (1.3.54), and eq. (1.3.53) holds for almost every x 
and z.

To get more insight into the properties of the eigenfunctions 99, we consider once 
more the resolvent equation (1.2.14),

RWf- R^f-R^VRt^f. (1.3.57)

Substituting the Green function on both sides, developing in a Laurent series in powers 
of Â-Aa, and equating principal parts yields

Go (x> y i 4) v( J’) dy jj P ( J, z ; Âa) /(z) dz. (1.3.58)

2*
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Taking in particular f = (paq gives

(1.3.59)

We now want to show that V (paq belongs to £2. To do this, we recall first of all 
that, since D(x,y; 2a) belongs to 82, it is a square-integrable function of y for almost 
every x, by Fubini’s theorem. Further, VZ?0(Aa) is a bounded operator. Denoting its 
bound by || VB0(xa) ||, we deduce from eq. (1.3.51) that

f[V(«)P(x,z; Aa)]2dz< const. || VP0(Âa) ||2 ( | D(x, y ; Za) |2dj, 
t r

(t[V(z)P(x, z; za)]2dz dx< const. || VP0(2a) ||21D(Âa) |2.

From this it follows with Schwarz’s inequality that

I VO) «PaeO) l2^ = 'j I VO) \ P(X’ z> 4) 9WX) dx \* dz

< [ V(z) P(x,z; lx)]*dz  dx jj I ^„(y) |2 dy<«>,

(1.3.60)

(1.3.61)

(1.3.62)

which is what we wanted to show.
It is now permitted to apply the operator Ho - zx to both sides of eq. (1.3.59). This 

yields
(H0-Aa)9?aff(jc) = ~V(*)
(H-AJ^/x) = 0.

(1.3.63)

In other words, satisfies the Schrôdinger equation. Since it belongs to £2, it is the 
eigenfunction for a bound state, with energy za.

Since in the region with Im |/Ä >e > 0 the number of poles of the resolvent is finite, 
the above argument can easily be extended to show that the Green function can be 
written in the form

JV(£) Qa _

G(x, j; Â) = > ------- X - Â-------+ Gb(^3'U;£)> (1.3.64)
a = i ?a«=i a

Im 1/Za > £

where GB is determined by the requirement that for Im|/Ä>£>0 it be the kernel of 
a bounded operator. In eq. (1.3.64) Qa and iV(e) are certain finite integers. This equa
tion is the analogue of the well-known heuristic expansion in terms of a complete 
orthonormal set ipqÇq = 1,2,...),

<7=1 *

which in general can be justified only when the spectrum is purely discrete.

(1.3.65)
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The formalism developed so far does not tell anything about the behaviour of 
the resolvent in the neighbourhood of the positive real axis. When we pass on to the 
theory of scattering in a forthcoming paper, we shall see that there is a continuous
spectrum from 0 to co. It will be discussed how this is related to scattering cross
sections. As regards the interval on the negative real axis where ()5lm|/Ä<£, we 
should like to know if the number of poles on this is finite or infinite. Il is obvious 
that in the latter case the origin would be the only point of accumulation. It was shown 
by Bargmann(IG) that, in the case of two particles with a spherically symmetric
interaction satisfying

\ -----------döx<<x>, (l.3.66)J-oo |X| V 7

the number of poles is finite. However, Bargmann’s method is restricted to separable 
Hamiltonians, as it is based on the theory of ordinary differential equations. We 
have not succeeded in recasting his ideas so as to make them applicable to larger 
numbers of particles. It is for this reason that the behaviour of the resolvent in the 
neighbourhood of the origin is left out of consideration in the present paper.

1.4. Spectral theory
1.4.1. The integral representation of the resolvent

Before we can pass on to systems of three or more particles, we must give a short 
summary of some elements of the spectral theory of self-adjoined operators. Most 
of the material of the present section can be obtained from Achieser and Glasmann (2) 
or other books on Hilbert space. However, with a view to future applications, we have 
preferred not to stress the well-known Stieltjes-integral approach to the resolution of 
the identity. Instead of this a formalism is given mainly in terms of limits of Riemann 
integrals of resolvents off the real axis. In future sections this will be found to be very 
useful, as it bridges the gap between the resolvent off the real axis, which is a fairly 
manageable quantity, and the spectral properties of the Hamiltonian, which have to 
do with the much more tricky properties of the resolvent in the neighbourhood of 
the real axis. Our final formulas are essentially the ones given by Titciimarsh(8) 
ch. XII, and the present paper owes very much to his book.

Let us start by considering (/*,  R(2.)f) as a function of Â, for fixed fin £2. It was 
discussed in section 1.3.3 that this function is regular off the real axis. It follows 
from eqs. (1.2.11) and (1.2.12) that

R(A) f) = T^(/,[R(A> - S(W) - (/TOW)iO. (1.4.1) 

so that in the upper half-plane the function (f, R(iï)f) has a non-negative imaginary 
part. Furthermore, it satisfies
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(1.4.2)

by eq. (1.3.29). From all this it follows that there exists a non-decreasing function of 
bounded variation E(Z; f, f) such that (Achieser and Glasmann(2) section 59)

(f,R^n = r
tl— 00

dE(l; f,f) 
l-l (Im Å > 0), (1.4.3)

- B (Z - 0 ; f, /) + ^ E(Z + 0 ; f, f) = const. + lim
* E^O

1
2 ti i

Ç (/, [R(m + ie) — R(m - is)] f)dm. 
•'’o

(1-4.4)

If, in addition to satisfying eq. (1.4.4), E(I; f, f) is chosen in such a way that

E1 (—oo;/’,/') = lim B(Z;/,/) = 0, 
Z~> —t»

E(Z-O;/",/■) = E(Z;/’,/>),
(1.4.5)

it is uniquely determined.
If we want to consider a general expression of the form (g, R(Å)f), it is useful 

to split this into four terms according to

4 (g, R (Â) n = (zz + f, R G) [g + f])-(g-f, *G)  lg - H) 

-i(g + if, R(X)[g + if] ) + i (g - if, R (Â) tø - if] ).
(1.4.6)

Here each term allows an integral representation of the form (1.4.3), and so the same 
holds true for the sum. In other words, there is a relation

(ff,R(A)/) - r
V— oc

dE(l-.g.f)
1-Å

(Im Â > 0), (1-4.7)

E(l\ g, f) satisfying equations of the forms (1.4.4) and (1.4.5). The function E(l; g, f) 
is no longer non-decreasing, but since it is a linear combination of non-decreasing 
functions, it is still of bounded variation.

Il follows from eq. (1.4.3) that

m + ie) - R(m — ie)] f) dm e
(m - l)z + e2 dE(l-,f,f)

E

(m - Z)2 + fi2
dm = E (<» ; f, f),

(1.4.8)

where the inversion of the integrations is justified by Fubini’s theorem for Stieltjes 
integrals (Saks(17) ch. Ill, section 8; also Widder(1 8) ch. I, section 15). If the way
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is remembered in which (g, E(Â)/’) was written as a sum of four terms, eq. (1.4.6), 
a similar relation is obtained for E(œ; g, f). Moreover,

- I (#, + Z£) “ - z'e)]/') I dm
™ .’-00

<E(jn’,g + f,g + f') + E(gx>:,g — f,g — f')->r-E(x>‘,g + if,g + if') + E(gx>',g — if,g-if'), (1.4.9) 

uniformly in £. From this it is obvious that as a function of I the integral

77—Ä (^, [E{m + i£) - E(m - ze)] f) dm (1.4.10)
2 n i

is of bounded variation uniformly with respect to £. As £ tends to 0, this integral tends to 
const. + [E (Z-0; g, f) + E (I+ 0; g, f)]/2 (cf. eq. (1.4.4)). Also, (Z-Â)"1 is a conti
nuous function of I. Hence, according to the Helly-Bray theorem on limits of Stiel
tjes integrals (Widder(18) ch. I, theorem 16.4), we have

(^E(A)/’) = lim ( dE g' ft - lim Rm -^—Ä(g,[R(l + ie) - R(l-ie)]f)j^. (1.4.11)

T->x

In this formula it is in general necessary to perform the limit with respect to e first, 
while the integration interval (L, T) is still finite, because the validity of the Helly- 
Bray theorem is restricted to finite intervals.

1.4.2. Spectral resolutions
To get more insight into the quantity E(°o; g, f"), we now consider the relation 

A(S,fi(A)O - -(</,/■) + (<?, Hfl(Â)/-). (1.4.12)

With Minkowski’s inequality, this yields a bound for the operator HR(ty according to 

li™(O/'llill/'ll + RIII-RG)/'lli 1+n^jj H/ll- (1.4.13)

Now, if g belongs to T(//), we clearly have

lim (<y, HE(z'v)/’) = 0. (1.4.14)
V->oo

But in view of eq. (1.4.13), this must also hold true for any arbitrary g in £2. For if 
we have any g in S2, we can always choose a sequence gN in Î>(H) which tends to g 
in mean square. In terms of this we get
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\(g,HR(iv)f)\ = \(g-gNtHR(iv)f) + (gN,HR(iv)f)\

5 11 <7-{72V II \\HR(iv)f\\ + |(#N, HR(iv)f)\<2 ||g - gN || ||/’|| + || HgN || 11 R(iv) f\\,

and this can be made arbitrarily small by choosing first N, next v sufficiently large. 
With eq. (1.4.12) it now follows that

lim iv(g,R(iv)f) = -(<7, f).
V~> X

Combining this with eq. (1.4.7) yields

(1.4.16)

(g, f) = -\imivV - CdE{V,g,f) E(^-,g,f), (1.4.17)
r->5C J— OO *■  V— oc

where use is made of the normalization E( — <»; g, f) = 0 (cf. eq. (1.4.5)). By eq.
(1.4.4),  an alternative way of writing this is

i T
(9> f) = lim lim — ( (g, [R (Z + ze) - R (I - ze)] f) dl.

L->~X e->0 -711 Jl
T->-x

(1.4.18)

In this form the expression is a generalization of the well-known expansion of (g, f) 
in terms of a complete orthonormal set of functions in £2. For let us consider the 
simple case that the spectrum is discrete, and such that the resolvent can be represented 
by a Green function of the form (l.3.65). Under these circumstances we have

(<7, [7?(Z + ze) - 7?(Z - ze)] f) = JV 9qfq,.
\^q~ I) + e

/« = ^vq(y)fCy)dy,
> (1.4.19)

so that the expansion (1.4.18) takes the well-known form

(9J) =î<J9fr
3 = 1

(1.4.20)

We note here without proof that the function U(Z; g, f) satisfies an equation of 
the form

E(l‘,g,f) = (<7, E(T)f), (1.4.21)

where E(l) is a projection operator with the properties (Aciiieser and Glasmann(2) 
section 65)

E(l) E(nï) = £'(min (Z, m)), 
£(-«>) = 0, E(x) = l, 
E(Z-O) = E(Z).

(1.4.22)
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The operator E(T) is called the resolution of the identity. Some authors normalize 
E(l) in such a way that E(/ + 0) = E(T) (see Stone(4) definition 5.1). This will give 
no confusion in the following. If there is a discrete spectrum with a Green function of 
the form (1.3.65), we have in any case

Â H- (5
(?,[E(Ap+0)-E(Ap-0)]/-)- limlim^( ” 3 9,f< f. L . <"

<5->0 £->0 n Àp-ô L—-/ \Aq~ 1 ) + e J

(1.4.23)

so that E(Åp + 0) - E(Åp - 0) is the projection on the subspace of £2 spanned by the 
functions ipq with Âq = Àp. It will be observed that in the above argument the limits 
with respect to £ and ô cannot be interchanged.

It is plausible after the foregoing that
(g.Hf) = {ldE(l;g,f), (1.4.24)

*—00

provided / belongs to T(//), a condition which is expressed by

G2dE(Z;/,/)<«). (1.4.25)

Equation (1.4.24) is discussed in great detail by Achieser and Glasmann(2), section 
66. It is another illustration of the fact that, roughly speaking, E(l+ A I) - E(l) selects 
that part of f for which the expectation value of the energy is between I and 1 + Al.

General functions of H are defined by (ref. (2) section 74)

provided f is such that

(g, F(H)f) = \°F(l)dE(l-g, /),
V—X 

(|F(/)|2dE(/;f,/)<.. 

•'—X

(1.4.26)

(1.4.27)

The expansion of the resolvent, eq. (1.4.7), is a special example of eq. (1.4.26). Also, 

(g, ezHt f) = ( eilt dE(l’, g, f) = lim lim——-Ä eilt (g, [Z?(Z + ie) - R(l — Z£)J /) dl, (1.4.28) 
•l-oc L-> —xg^.0"71'1*̂

T-> x

where the transition from the second to the third member is made with the Helly- 
Bray theorem, as in the proof of eq. (1.4.11).

If the resolvent can be represented with the help of a Green function with the sym
metry property (1.3.17), it is useful to introduce

Im G(x,y;X) = [G(x, y ; z) - G(x,j; Â)].
Z

(1.4.29)
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Then for any bounded and continuous function F the expansion formula may be 
written in the form

(g, F (H) f) = lim lim — Ç F(l) dl Ç g (x) dx ( [Im G (x, y ; 1+ ze)] /’(j') dy. (1.4.30) 
e->o •' »

T->oo

1.4.3. An upper bound for the resolvent
If the resolvent is regular in a region which includes an interval L1<l<L2 on 

the real axis, we have
lim ^(<7, [JR(/ + z£)-A(/-z£)]/')dZ = 0. (1.4.31)
£^-0 "Lt

In other words, the integral in the expansion formula receives contributions only 
from the part of the real axis where the resolvent is singular, that is from the spectrum 
of H. In particular, if the spectrum is bounded below, i.e. if there exists a finite L 
such that the resolvent is regular in the half-plane ReÂ<L, there is no contribution 
from /-values with 1<L. Hence, in this case the limit with respect to L may be omitted 
from equations such as eq. (1.4.11), provided L is chosen sufficiently small.

If the lower bound of the spectrum is denoted by A, it follows from eq. (1.4.4) 
that E(l; f, f) = const, in the interval — <»</</l. Together with eq. (1.4.5) this 
yields that, in fact, E(l; f, f) = 0 if - oo<l<A. Hence, the integral representation of 
the resolvent may be written in the form

(f,R(A)/) - • (14'32>

Equation (1.4.1) now gives
(H (A) f, R(X)f)=A dE - (1.4.33)

If in this expression we write z = A + lei(p, then for

[(m -A)2 + I2 - 2 (m - A) cos <p] 1 dE (m ; f, f) 
A

\\ R(A + lei<p) f\\2 = (

It is already known from eq. (1.3.29) that

||B(Z + Ze^)
1

I /sin (p I

(1.4.34)

(1.4.35)

Combining these two inequalities shows that, whenever 0 < <p < In, 

|/(2 -Z)]2’
This is a generalization of eq. (1.3.31) for the norm of /?0(Â).

(1.4.36)
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1.5. A separable three-body problem
1.5.1. The resolvent

We are now able to tackle the simple three-body problem in which there is an 
interaction V12 between particles 1 and 2, but no interaction between particle 3 and 
particles 1 and 2. By eq. (1.2.4), the differential operator for the relative motion is 
in this case

H'(x15x2) = ^(xJ + H^x,),

^12 (Xl) = “ (Xl) + ^12 (Xl)’ ^o(X2) ~ ~ ^(X2)’

(1.5.1)

the Hamiltonian being the self-adjoint extension of H'(xx, x2).
The important point about eq. (1.5.1) is that H' separates into two differential 

operators which act in different Hilbert spaces. It is therefore useful to consider the 
spaces S2(x1), £2(x2), and S2(x1, x2). The extension of H'^Çx^) in ß2^) is denoted 
by H12(x1), the corresponding resolvent by Zî12(x1;Â). Likewise, the extension of 
7?o(x2) in ß2(x2) is denoted by H0(x2), the resolvent by /?0(x2; ^)-

In an obvious way the Hamiltonians //12(x1) and HQ(x2) can be considered as 
operators not only in £2(x1) and ß2(x2), respectively, but also in ß2(x1}x2). In this 
sense, we have

H(Xi, x2) = H12(Xj) + Ho (x2). (1.5.2)

Likewise, the resolvents can be considered as operators in S2(x1, x2), with the same 
bounds as in S2(x1) and ß2(x2), respectively. In the space ß2(x15 x2) we write

(<7(xi,x2), ^(xj^^x^xg)) = ^g(x1,x2)dx1dxÅG12(x1,yl‘,Å)f(y1,x2)dy1, (1.5.3) 

and similarly for /?0(x2; z).
Now, if 9?12(xi) is an eigenfunction of ?/12(x1), and y0(x2) an eigenfunction of 

H0(x2), the product 9?12(xi) (Po(.x2) an eigenfunction of H(xlf x2). And if the spectra 
of H12(x1) and H0(x2) were discrete, all the eigenfunctions of H(x1,x2) could be 
obtained in this way. In view of the relation between resolvents, Green functions, and 
complete orthonormal sets of eigenfunctions brought out by the spectral theory, this 
suggests that, if the resolvents /?12(x1; an<l ^o(x2J are known, the resolvent 
R(xlt x2; Â) can be constructed therefrom. It is the purpose of the present section to 
prove that this is indeed the case. As a matter of fact, it is shown that

(g(x1,x2),Ä(x1,x2; Â)/’(x1,x2))

2 TT I Jc
^12(X1> o)/(x1,x2))d<7,

(1.5.4)

where C is a suitable contour in the cr-plane such that the singularities of 7?12(X]J o’) 
are on the right of C, and those of /?0(x2; Â - u) on the left of C.
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To be explicit, let us choose

A = / + zv (v > 0),

Then, denoting the right-hand side of eq. (1.5.4) by I, we have 

/-•s-izvjz/(x1,x2)||2ds “

x [J l|Ri2(xL s + |I’v)/’(xi» *2)  II2 ds •

(1.5.5)

(1.5.6)

Our first step is now to establish that I/(|| /’ll || g ||) is bounded uniformly in /. in the 
half-plane ImA>s>0. To do this, we note that since f(xr, x2) belongs to ß2(x1) for 
almost every x2, by Fubini’s theorem, the spectral theory of section 1.4 can be applied 
to f?12(*i;  o') by keeping x2 fixed at first, and integrating over x2 as a last step. In this 
way, eqs. (1.4.1) and (1.4.7) give

^12 = J 11 ^12 (*1 J s *v) f(xi, *2) 112 ds

(1.5.7)
= Gs Çdx

J (m-s)2 + |r2
4

where the argument x1 of E denotes that the spectral theorem has been applied in 
the space S2(x1). The integration with respect to s may now be performed first, and a 
bound for /12 is obtained of the form

Ir2<^-^dx2E(x^ ^\f(x1,x2),f(x1,x2y) = V$f/X2jj l/'(xi’x2) l2rf*i  = “II/'ll2- (1-5.8)

As a similar argument applies to RQ(x2’, A — cr), it follows that I/(\\ f\\ || g ||) is bounded 
if v>£>0, as we wished to show. The useful consequence of this result is that it is 
sufficient to check the desired relation (1.5.4) for functions /’and g in T(H(x1,x2)) 
only. The final result for all /’ and g in £2(x15 x2) follows with a limiting procedure 
such as used to get eq. (1.4.16).

Let us choose, then, functions f and g in T(//(x1, x2)). These belong also to 
S(H12(x1)) and S(H0(x2)). Let us further apply the operator

1 = R (xj ? x2 ; Â) [7/)2(Xj) + Hq(x2) — 2] (1.5.9)
to

R0(x2; Â-<t)R12(x1; zr). (1.5.10)
This yields

Ro(x2Î A-<t)R12(x1; a) = R(x1,x2; A) [R0(x2; A - or) + R12(x1 ; or)]. (1.5.11)
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By eq. (1.4.12) we have

1 J (1-5.12)
- - (ff (»1, x2), f(x,, x2)) + - (g (x,, x2), Ii12 (Xj ; a) H12 (x,) f(x,, x2)). J€T O

Since H12(x1) /’(x1, x2) belongs to £2(x1} x2) by assumption, we may apply the spectral 
formula for the resolvent to the second term on the right-hand side of eq. (1.5.12). 
With this it follows that

S + |I V) X2>)

—~------ 1 t dmE(x1; m; g(x1,x2),H12(x1)f(x1,x2)) = 0.

s + - z r p m - s - - iv2 2

(1.5.13)

Hence it is only the first term on the right-hand side of eq. (1.5.12) which gives a 
non-vanishing contribution to the convolution integral I we want to evaluate. A 
similar argument applies to the contributions from Ro(x2 ; 2 - cr). With eq. (1.5.11), 
I therefore takes the form

I + iv)f(xlf x2)) ds

(1.5.14)

= (9 (*i . xz)>R Oi > x2 ; ^) A Oi > *2)) »

which establishes eq. (1.5.4) for Im2>0. It can likewise be established for Im2<0. 
In the case at hand, in which the spectra involved are bounded below, the contour 

in eq. (1.5.4) may be deformed in various ways. If, for instance, 2 = / + zr (v > 0) and

a = A+Tei(? (OSzpczi), (1.5.15)

it follows from what we know about the bounds for /?12 and Ro that the integrand in 
eq. (1.5.4) does not exceed

IMI llfll [Im |/(2-a)]2 Im a Hÿll II/'ll 1 v + Tsin9?

2

(1.5.16)

Hence, if we integrate from (p = 0 to <p = cpQ<n along the circumference of the circle 
with centre 2 and radius T, the integral so obtained tends to 0 as T tends to w. Like
wise, denoting the lower bound of the spectrum of -H12(xi) ^y ^12 > we see that 

cr =/112 -T+ZT (y<v + e<T<T), (1.5.17)
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the integrand does not exceed

ll<71l \\f\\ rr^---Titt ,/7 7TT12 -II.9II ll/'ll — -•|Im(A-cr)| [Im y (a - /l12)j t-vT (1.5.18)

Hence the integral along the straight line from A12-T+iv + ie to A12-T+iT also 
tends to 0 as T tends to 00. With arguments of this sort it is easily shown that as our 
contour we may in fact take any path which does not cross the cuts in the c-plane 
caused by the singularities of 7?12(o') and 2?0(A-o-).

If A is in the half-plane ReA5/li2-e <Z12, it is convenient to choose the contour 
parallel to the imaginary axis. It is easily seen that the integral so obtained converges 
uniformly with respect to A. Hence, since the integrand is a regular function of A, 
so is the integral. If A is not real, the integral yields the resolvent, by our previous 
analysis. Its being regular therefore implies that the resolvent exists, and is regular, 
throughout the half-plane ReA<Z12. Combining this with previous results shows that 
the resolvent exists everywhere in the A-plane cut from /112 to », and that it is a 
regular function which can be evaluated by means of a convolution integral according 
to eq. (1.5.4).

For future reference it is useful to write the right-hand side of eq. (1.5.4) out in 
the form

-—A do \ ÿ(x1,x2)/?0(x2; Å-o)R12(x1; a^fÇx^x^ dx1dx2, (1.5.19) 
2 % z J c J

and to compare this expression with

\ d a \ I g (xx, x2) Ro (x2 ; A - a) R12(x± ; a) f(xr, x2) | dxt dx2
2 71 J

-2n\cdCT|l!/l1 11/11 [fm/O-ÔP Tim ’
(1.5.20)

If C is chosen in a suitable way, this integral is certainly convergent. Now in the original 
convolution expression, \cda was meant to be a Riemann integral. However, if we 
are willing to interpret it as a Lebesgue integral, it becomes possible to invoke Fubini’s 
theorem to invert the order of integration in the expression (1.5.19). Then we may 
write

Z?(x1;x2; A)/’(x1,x2) = -i-. (t?0(x2; A - a) 2?12 (xt ; <r)/(x^ x2) z2<r. (1.5.21) 
711 J q

In this sense there is a convolution integral not only for the inner product (g, R(Â)f), 
but also for the function R(Å)f.
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1.5.2. The Green function

The object of the present section is to show that the resolvent R(xlf x2; 2) is an 
integral operator the kernel of which is a Green function of the form

G(x1,x2,y1,y2; Å) = -—.( G0(x2,y2; A-a) a)da. (1.5.22)
1 n i

The distinction between this and the results (1.5.4) and (1.5.21) concerning the resol
vent is that in the latter expressions certain integrations with respect to the space 
coodinates are performed first, the integration with respect to cr next, whereas in 
eq. (1.5.22) it is implied that the integration with respect to a must be performed first.

To prove eq. (1.5.22), we split G12 according to eq. (1.3.27),

g12(xi^i; <0 = G0(*i>Ji;  O') -\GQ(x^zi>(J}Vi2{zi)G12(<z1,y1',a}dz1. (1.5.23)

This corresponds to a splitting of R of the form

/?(«!, x2; 2) = 7?0(x1,x2; 2) - [^(XpXg; 2) -/?(x1,x2; 2)]. (1.5.24)

Here it is known from eq. (1.2.17) that Ro is an integral operator the kernel of which 
involves a Hankel function of order 2. In other words, there is a Green function

G0(xi,x2,y1,y2; 2) i"2
16%2

_______ 1________
I x1-y112+ I x2-y2l2

H<1)(j/2[|x1-y1|2 + (1.5.25)

It is now shown first that this function is obtained when the first term in the right
hand member of eq. (1.5.23) is folded according to eq. (1.5.22). More generally, it is 
shown that, when 2 is not on the positive real axis and rx + 0, r2 M= 0 ,

i
4

p p + q +
((^+r2)è P)

(1.5.26)

Then it follows with eq. (1.2.17) that

^-AgJw,)(x2,J2; G(onû(x1,y1',a)da =
7b I J (J

G^1 + ni 1)(x1,x2,y1,y2; À). (1.5.27)

In this relation the superscripts n refer to the numbers of particles involved. To describe 
the relative motion of n particles, 3n — 3 coordinates are required. In particular, for 
three particles we need six coordinates. Three of these are used for the relative motion 
of particles 1 and 2, the remaining three for the motion of 3 with respect to the centre 
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of mass of 1 and 2. Since formally the latter motion is also of the two-particle type, 
it is consistent that the three-particle function G(03) is obtained from a convolution of 
two two-particle functions G^\ More generally, it is indeed the function for n1 + n2 — 1 
particles we must expect on the right-hand side of eq. (1.5.27), rather than for nx + n2 
particles.

In evaluating the integral in eq. (1.5.26), it is convenient to deform the contour C 
into the positive real axis described twice in opposite directions, the origin being 
encircled clockwise. Then the integral takes the form

1
16tc i

If we now make the substitution

(23Ir1)-»(23rr2)-«p!,(2-s)iîJï(r1)/s)/7g(1>(r2/(A-s))ds. (1.5.28)
Jo

(r2 / G - s)) = ^97tiK_q(r2 j/(s-2)), (1.5.29)

where |/ (s - 2) must be chosen such that its real part is positive, we get an integral of 
the type studied by Sonine and Gegenbauer. According toWatson(1 9), section 13.47, 
it is proportional to (-i(r? + • If this K-function is again expressed
in terms of a Hankel function, the desired relation (1.5.26) immediately follows.

It remains to compare the second terms on the right-hand sides of eqs. (1.5.23) 
and (1.5.24). According to eq. (1.5.4) and the known representations of /?0(x2; 2 - er) 
and /?i2(5Ci’ °’)> we have

(9 (*̂1  ’ X2)> l?o(Xl ’ X2 ’ ^) R (X1 > x2 ’ Å)] f (X1 > ^2))

x2) dxx dx2\GQ(x2,y2,Å-<j) [GQ(xx,yx, o) - G12(xx, yx, a)] /'(jq.jq) dj2 >(1.5.30)

x2) dxx dx2\ G0(x2,y2; Å- f(JT ^2) djq d«y2\Go(*u  zi > ff) vi2 (zi) g12 (zi> yi : a) dzi J

the third member following from eq. (1.3.27). To establish B(x1, x2; 2) as an integral 
operator, it must be shown that in eq. (1.5.30) 

Writing (xi > yi > ~ \ Go (xi ’ zi ’ a) tz12 (zx) G12 (zx , jq ; a) dzx,

(1.5.31)

(1.5.32)

we know from eqs. (1.3.4) and (1.4.36) that

\\ I F(*i  > i I2 djq ± I 7?o?) vi2 P 11 ^12(O 112 ± const- 777 rT 1Z /—77 • (1-5.33)
JJ Im|/<T [Im |/(a — t112)j
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Substituting the expression for G0(x2, ,y2; A- o') and introducing x2 -y2 = y2 now yields

\ do-\ dx1 dx\ dy1dy2 | <7(x15x2) G0(x2,y>2; A - tr) F(xx, jq ; <0/‘(Ji. I 
•’ (7 J ♦’
Iff f / _ e^A-aly/l ,

\ do\dxr dx2 \ dyy dy2 g(x1,x2)---- ——---- F(xx, y1 ; a) f(ylt x2-y2)
•’ •’ ly2i

ie f , eOA-al^il
< —---- -v-----  ||<7ll |F(u)| \\f\\

4™Jc •’ I y21
C 7 1 1 1 hconst. \ da ------ -—------------ —------------------------------------- 7-------- -—rrx || q
>c [Im |/(Â-cr)]2 (Impa> [Im |/(a-H12)]2 

(1.5.34)

which is certainly finite if C is a suitable contour. Hence, if we interpret \c da as a 
Lebesgue integral once more, as was done at the end of the previous section, we may 
invert the order of integration according to eq. (1.5.31) by Fubini’s theorem. Then 
it follows that the resolvent is indeed an integral operator, the kernel of which can 
be evaluated by means of a convolution integral according to eq. (1.5.22).

1.5.3. Uniqueness of the Green function
It follows from the general theory of Hilbert space that the resolvent is unique. 

However, this does not imply that it can be represented by a Green function in only 
one single way. Let us therefore first consider the problem of the uniqueness of the 
function Go. According to eq. (1.2.17), there is a function Go which depends only on 
x— y, and which is an integrable function of this difference. Let us now imagine that 
there arc two functions Go with these properties, and let us denote their difference by 
Qo. Then Qo satisfies

\ I QoCx-y) I d(x-y) < co. (1.5.35)

Also, by the uniqueness of the resolvent,

Ç </(x) dx ( Q0(x-.y)/’(.y) dy = 0 (1.5.36)
J J

for every f and g in S2. Writing x-y = z and going over to Fourier transforms f and 
g yields

iU(Ä)Qc(z)e“ ""’/(*)  “ 0- (1.5.37)

In view of the arbitrariness of /’ and g, it now follows that

\Q0(z)e-tb-*dz  - 0 (1.5.38)

Mat.Fys.Skr.Dan.Vid.Selsk. 2, no.8. 3
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for almost every k. But this result can easily be extended. For, owing to eq. (1.5.35), 
the integral in eq. (1.5.38) is absolutely convergent. It is easily shown that as a con
sequence it is a continuous function of k. Hence il vanishes not only for almost every 
k, but in fact for every k. From this it now follows that Q0(z) vanishes for almost 
every z ( Titciimabsu (20) section 6.7), so that the Green function G0(x, y ; Â) is in fact 
unique among all integrable functions of x-y. It will be observed that this conclusion 
does not depend on the number of particles involved.

We now turn to the function G. After the foregoing, it suffices to consider the 
difference G-Go. It was already used at the end of the preceding section that this 
depends only on xlf ylt and x2-y2, and that it satisfies

jj [Jj I G(*i, 2

AnAi-J2: - G0(x1,x2,y1,y2; Z) | d(x2-j2) dx±dyr< 00 (1.5.39)

Let us now again assume that there are two functions G-Gowith these properties, and 
let us denote their difference by Q (xq, jq, x2-y9). This gives

( (xq, x2) dxr dxÅQ (xt, , x2 “ ^2) /"(^i. J2) <V2 =
• •

0. (1.5.40)

Choosing in particular

/'(Xi,x2) = tt(x1)/’(x2), (/(x1,x2) = ô(x1)9(x2), (1.5.41)

we easily gel an equation analogous to eq. (1.5.37), viz.

(xj Q (x1, jq, z) a (jq) dxr dy e~ih s f(k)dz dk = 0. (1.5.42)

As above, this implies that

(e iksdz{{b(x1)Q(xl,y1,z)a(y1)dx1dyl = 0 (1.5.43)

for almost every k, and even for every k. From the arbitrariness of a and b it now
follows that

tk s dz = 0 (1.5.44)

identically in k for almost every x^jq. Also, the integral in eq. (1.5.44) converges abso
lutely for almost every x^jq, by Fubini’s theorem and the integrability properties of Q. 
Hence, for almost every x^jq we have an integrable function of z, the Fourier trans
form of which vanishes identically. Since such a function is known to vanish for 
almost every z, it follows that Q(x1,y1,z) = 0 for almost every x1,j^1,z. Hence, 
among all the functions with integrability properties as indicated by the relation 
(1.5.39), the function G - Go is unique, with the trivial exception of sets of measure 
zero. In particular, G — Go does not depend on the choice of the contour C, as long as 
\cdcr converges properly. This was plausible from the outset. But it was not obvious, 
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say from an argument about contour integration, as we have not discussed the analytic 
properties of functions which depend not only on A, but also on variables x and y.

It follows from eqs. (1.5.22) and (1.3.17) that

G(xi, x2, y15y2; Â) = (1.5.45)

where C is the reflection of C in the real axis. Now the right-hand side of eq. (1.5.45) 
is equal to a function of the form G (xlt x2,yl,y2; Ä). Hence, since the Green function 
is unique,

G(x15 x2,y1,y2; A) = G(xL, x2,y1,y2; Ä). (1.5.46)
Also, by eq. (1.3.18),

G(x1,x2,y1,y2; A) = G(y1,y2, xlf x2; A). (1.5.47)

1.6. The Green function for three particles
1.6.1. The resolvent equation

After the preparations made in the previous sections, it is comparatively easy to 
find the Green function for a system of three particles in which there are non-vanishing 
interactions
1.2.1, these

V12

where it is essential that the constants c*y  do not vanish. To save writing, we define 
(i <j). The resolvent for the present problem is denoted by 7?^3)3, uPPer 

index indicating that three particles are involved, and the lower index that all the 
three interactions are present. The resolvent for the three-particle system without 
interaction is henceforth denoted by 7?^3), the one with interaction only by 7?J3). 
There is no need to consider a three-particle system with two interaction terms such 
as V/y + Tq .

From the considerations which led to the resolvent equation (1.2.14), it is easily 
seen that 7?^3 satisfies

flS’sW - (1.6.2)
\i <j /

as well as the three equations of the form

M&U) = 7?g>(A)-7?W(A)(V4t+ (7<j, (1.6.3)
Also,

7?g>(A) - 7?e>(A) - 7?<,»(A)V(JR(»(A). (1.6.4)

Adding the three equations (1.6.3), subtracting twice equation (1.6.2) and using the 
relations (1.6.4) yields

in section‘12’ ‘13’ an(l ‘23- With the choice ol coordinates 
are functions

3*
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'få (Â) f(x) = V /?(3) (Â) /ïx) _ 2 y?(3) (A) z-(x) + 21 [<) (A) _ Ag) (Å)] (Vik+ Vj fc) A(3)3 G) /ïx) 

i<j i<j
i # k,j # k

- Z f(*)  - 2 /<;?’ (2) /■(«) + yx3) G) v„ fig>(A) ( v( k + v!t) «® (2) f(x).
i<j i<j

i # k, j # k

(1.6.5)

The point is now that this can be written out as an integral equation for (A) /’(x) 
the kernel of which will be shown to belong to S2. This means that from the Hilbert- 
space point of view eq. (1.6.5) is entirely analogous to the two-particle equation (1.3.2). 
In particular, it can be solved by the Fredholm technique. And owing to our knowledge 
of the bounds and the analyticity properties of the resolvents R^ and Rff, the sym
metries of the associated Green functions, and related matters, all considerations of 
section 1.3 can be carried over directly to the present problem. We thus find a Green 
function of the form

Gfå (x, y; 2) = £ G« (*. J ; 2) - 2 G® (x, j ; 2) 
i <j (1.6.6)

which is entirely analogous to the two-particle Green function discussed in section 1.3. 
It is obvious that in eq. (1.6.6) x, y, and z are meant to be six-dimensional coordinates. 
From the properties of the resolvents R^ it follows that in the three-particle case 
there is a cut in the Â-plane from min (Zt12, /113, ^23) t° 00 > being the lower bound 
of the two-particle spectrum concerned. In the cut plane, the resolvent 7få3(Å) is 
regular except for possible poles.

1.6.2. An upper bound for the kernel

To return to the equation we have to solve, eq. (1.6.5) is of the form

It is now shown that each of the three terms in the expression for J<^3 belongs to £2. 
Then the same applies to /\få itself. In particular, let us consider the term with 
i,j = 1,2. For this it follows from eqs. (1.5.22) and (1.5.23) that
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Repeated application of Schwarz’s inequality yields

(1.6.10)

With the relation
gir^Å — cr

4 nr

to be used in connection with Gq2) (x2 , y2; z - a), and eqs. (1.5.32) and (1.5.33) for 
the second factor on the right-hand side of eq. (1.6.9), the inequality (1.6.9) can be 
reduced to

t‘ 1 1I < const. \ ~-- 77. ~-----w —----- n----- ;—rrv der'c |/G [Im l/(cr-A12)]2

< const.
r r ,1a b r r der
L'c [!m L’c[Im j/(<r-Z12)]3.

(1.6.11)

the third member of eq. (1.6.11) following from Holder’s inequality (Titchmarsh(15) 
section 12.42). In passing from eq. (1.5.33) to eq. (1.6.11), use was made of the 
relation

Im |/(ct-Z12) £ Im j/cr, (1.6.12)

which holds true by virtue of A12 being real and non-positive.
To find an upper bound for I, it is now convenient to write

A-Z12= !ei(P (1.6.13)

and to choose as the contour C the straight line

cr = sea +zl12 (—oo<s<oo). (1.6.14)

This line is tangent to the parabolas [Im ^/(cr - zl12)]2 = - [Im ]/(Â-Zl12)]2 and 

[Im |/(A - er)]2 = - [Im j/(Â - zl12)]2. These parabolas in turn are tangent to one
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(1.6.15)

Substituting this into eq. (1.6.11) yields

(1.6.16)

(1.6.17)
□o

At this point it is convenient to write

(1.6.18)

variable

(1.6.20)= const.

J2

to co. Then the inequality for I lakesand to go over from the integration 
the form

another, the line in question passing through their point of contact. It follows from a 
straightforward calculation that on the line (1.6.14)

Since the term involving sinh co clearly gives no contribution to the integral, we finally 
obtain

3
2

cosh y -I- 1 dip.

2 1 1+ - / sin -9?4 2
2 1 1

1
. 1 sin — (p

[Im| (ct-Z12)]2= - -^cos^s --/cosi(p\ +

The change of variables / = ^/ sin - <p sinh ip now gives

I < const.
.7’2^
p / sin - cp

/< const. —-— \c

]//sin2~9? J_

1cos - 9?
= sinh /,

sin - 99

I < const. '
• — oc

J

I’* L 1 1 / • 2 1 1 ,2 • 2 1 Y
( / cos - (p + - /sin - (p + I /“ + - / sill - Ç? I
• — oc L " -1 — \ — /

1
I < const. -

/? • 3 1 p / sur - (p

(cosh co + 1)~ 2 cZ co. (1.6.19)
r cos - 9?

M /"• 1 _ ______  Cl r"l Ci\L 1 U M 1 U J — b 11111 (JJ
.1 .1.sin - 99 sin - cp

This must now be combined with eq. (1.6.9) and with the last line of eq. (1.6.7). 
If in the latter expression we use the explicit coordinate-dependence of V13 and V23 
as given by eq. (1.6.1), we get
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(1.6.21)
< const.-------------—

[Im |/(2 -Zt12)]6

It will be observed that, as regards the integration with respect to y2, it is essential that 
Cj3 and c23 do not vanish, and that is assumed to be square-integrable.

The inequality (1.6.21) obviously states that in the sum for /i^23 the term with 
i, j =1,2 belongs to S2 provided 2 is an interior point of the complex plane cut from 
Zl12 to oo. If for a moment we imagine a choice of coordinates adapted to z,j = 1, 3 
or 2,3, we see that these cases can be discussed along exactly the same lines. Hence 
each term in the sum for K^3 belongs to S2, and so does K^3 itself, provided 2 is 
inside the complex plane cut from min (/112, 3,Z23) t° 00 • Moreover, it follows with
eq. (1.6.21) that if 2 is negative and sufficiently small, the £2-norm of K^3 is less than
1. From this it follows by the argument used in connection with eqs. (1.3.49) and 
(1.3.50) that the spectrum of is bounded below.

Summarizing, we see that the properties of K$3 are such that in the 2-plane cut 
from min (Z12, M13, Zt23) to œ we can evaluate the Green function G^23 by the Fredholm 
method outlined in section 1.3. In the cut plane the resolvent is regular except for 
possible poles confined to a finite interval of the real axis. Now it will be shown in a 
forthcoming paper on the theory of scattering that in the present case there is a con
tinuous spectrum from min (zl12, M13, /123) to co. Hence, if there are no poles in the 
cut plane and we introduce Z123 = min (M12, vl13, Zl23), the zl123 thus defined is the 
lower bound of the spectrum. And if there are poles, there is still a lower bound 
M123, which is then less than min (M12, M13, zl23). In either case it is clear from previ
ous arguments that the norm of ltf^3 satisfies

II Ä123<Z) II < min
[Im |/(2 - zl123)]2 11 m 21

(1.6.22)

cf. eqs. (1.3.29) and (1.4.36). Furthermore, with eq. (1.6.21) it is not difficult to see 
that

I Ä® (A) I < const. I---  (1 6 23)
[Im |/(2 - Z123)]3

It follows from the foregoing that in the expression (1.6.6) for the Green function 
G^3 the last term on the right-hand side belongs to £2. Clearly it is the kernel of the 
integral operator

0 = <3 -2;/;®+ 2/?®. (1.6.24)
i<j

But this operator is unique in the sense that, if f and g are any two functions in £2, 
the quantity (g, Of) is uniquely determined. From this it follows with arguments such 
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as used in section 1.5.3 that, among all the kernels in £ , the last term on the right
hand side of eq. (1.6.0) is unique. Also, the Green functions Gq3) and (iff are unique 
in the sense specified in section 1.5.3. As a result, G(]23 is unique in the sense that it 
can be written as a sum of functions with suitable integrability properties in only 
one way.

As a concluding remark it seems worth while to point out that in the above argu
ments it is an essential step to consider the somewhat complicated resolvent equation
(1.6.5).  If we had merely confined ourselves to eq. (1.6.2), we should have had a 
kernel of the form

G<3)(x, y ; Â) YVij(y), (1.6.25)
i<j

which certainly does not belong to £2. For G^ depends only on the difference |x-.y |, 
according to eq. (1.5.25), and V12 depends only on yr. Hence Gq V12 might be a 
square-integrable function of x-^y^, x2—y2, and yL at best, rather than a function 
which is square-integrable with respect to four independent variables. However, 
even square-integrability with respect to three variables does not hold, since for 
x = y the function G^ has a singularity which prevents it from being square-integrable. 
Similar remarks apply to G^ V13 and Gq3)V23. Apparently the gist of eq. (1.6.5) is 
that in this equation a first approximation to /?(123 is split off which is so good that 
the remainder is sufficiently regular and for large | x | and |_y | falls off sufficiently 
rapidly for the equation to be soluble by the Fredholm method.

1.7. General numbers of particles
1.7.1. The resolvent equation

For discussing a general system of n particles, it is convenient to adopt the fol
lowing notation. The symbol (n,k)p^ denotes a certain way in which n particles can 
be split into k groups. Here the subscript p(k) refers to the particular mode of division. 
Hence p(k) = 1,2,..., N(n, k), where N(n, k) denotes the number of ways in 
which n particles can be split into F groups. In the case of a particular division(7t,Å) (jk), 
let us imagine that ail the interactions between the particles which together form a 
group are present, but that there are no interactions between particles belonging to 
different groups. The total interaction present in this way is denoted by V(n, k)p^ky. 
The resolvent for the n-particle system with this interaction is called R(n, k) It 
will be shown that it is an integral operator with kernel G(n, k)p^, the Green function. 
Comparing this notation with the one used thus far, we have, for example,

V (n, O - Z'’i;-V,
i <j

V(n,n) = 0, /?(n, n) = R(on\
(1-7.1)
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It is also convenient to make use of the symbol c, where (n, k + O^ + d c (n, À)^ 
indicates that the division (71, k + l)p(jt + 1) is contained in (n, k)p^ky in the sense that it 
can be obtained from (n, k)p(ky by splitting one group of the latter division into two, 
the remaining groups being left unchanged.

It is the purpose of the present section to show that for n >2 the resolvent satisfies 
the equation

n N(n,k)«('>.’) "Z Z (-!/(*-!)!
k = 2 p(k)= 1

P(n-1), ..,P(k),..,P(2)
c .-c(n,*)p(fc)  c • • c (n, 2)?, (2)

x...R(n,k + l)p(k + 1)[V(n,k)p(k)-\\n,k + })p(k + 1)] . . . B(n,2)p(2)[ V(n,l) - V(n,2)p(2)]}j?(n,l).

It will be observed that this equation was already established for n = 2 and n = 3. 
One of its features is that with all the groups of particles considered, there are always 
interactions between all the particles in each group. In other words, for discussing 
a mode of division in which the particles i,j, and I together form a group, we need 
the properties of the three-particle system with interaction Vi:/+Vit+V}1. But no
where in the analysis does there occur an “unphysical” system such as the one with 
interaction only.

In the notation of the preceding sections, eq. (1.7.2) gives an equation for Ai234 
in terms of the six resolvents of the form Rff, the four of the form 7?^, and 
the three of the form 7?^4);JU. Here R^j.^i stands for the resolvent of the four-particle 
system with interaction Vkl (z 4= k, i 4= l,j 4= k,j 4= /). As will be discussed in 
some detail later, it can be obtained from a convolution of the resolvents Rff, R^k\, 
and R$\

Let us now assume that for n-1 particles (rz>3) eq. (1.7.2) is established by a 
combinatorial argument based on the set of resolvent equations

7?(7z-l,À%(A;) = B(7î-l,/)î3(O-7?(n-l,/)î,(O[y(7i-l,À’)3?U)-Vr(zi-l,/)î,(OH?(7î-l,Â’)2)(fc) (1.7.3) 

with fixed 77-1, the numbers k, l,p(k),p(T) taking all possible values. Then it can 
be shown that the desired equation for 77 particles follows on combining resolvent 
equations of the form (1.7.3), but with 77 - 1 replaced by n. For the proof it is con
venient to choose a particular mode of division (77, n —1) (n_D, and to consider the 
expression

S(zi, 77 1 )p(n — 1) — ( 0 x* . • • • Op(n-l) ^)p(#-2) L(t7, 77 1 )p(n -1)] I
P(n—2),. •, P(k), ■ ■, p(2) J
(w,n-l)p(n_1) C (»,n-2)p(n_2) C •• c(»,2)p(2) / (1.7.4)

X .. . R(n, 2)p(2) [ V(n, 1 ) - V(n, 2)p(2)]}«(n, 1 ), 
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which dillers from the sum in eq. (1.7.2) in that the factor 7î(zz, n) Vr(zz, n - 1 )p(n _1) 
and the summation over p(zz-l) are left out.

It is obvious that the division (zz, zz-l)p(n_D must consist of n-2 free particles 
plus a group consisting of two particles, say the particles i and J. Furthermore, the 
structure of the sum in eq. (1.7.4) is such that in all factors the particles i and j always 
belong to the same group. Hence if we temporarily consider i and j together as one 
composite particle, we can say that in a certain sense the multiple sum in eq. (1.7.4) 
involves only zz - 1 (composite) particles. This suggests that we compare it with the 
multiple sum which appears in the equation for zz - 1 particles. By assumption, there 
is a combinatorial argument based on the set of equations (1.7.3) to show that the 
latter sum is equal to a certain linear combination of resolvents R(n-1, k)p^ky. Now 
to each equation (1.7.3) there corresponds an equation

7?(n, p (yp = O® g)—Ojj (o [ — Op (z)l(fc) ’ i
(7Z,7Z - l)p(n —i) c(n,Ä-)p(Ä.), I (1.7.5)

(7h ~ i (n — 1) C— (R’ ^)p (I) ’

which obviously is of the same structure. If we imagine that in the (n - l)-particle 
system there is no particle j, and that the division (n,k)pW is obtained from (zz - 1 , 
Â’) (Jfc) by adding j and attaching it to z, we can find V(n, k)p(ky from V(n- 1 , k)p(ky 
by merely replacing all terms Vit in the latter interaction by + and adding Vtj. 
The difference V(n, k)p(k)-V(n, l)p(l) is obtained from V(n-1, k^p(k)-V(n-1, l)pW by 
replacing all terms Vim in the latter expression by Vim + Vjm, the remaining terms being 
left unchanged. Summarizing, it is clear that with a suitable change of notation the 
combinatorial analysis which led to the (zz - 1 )-parlicle equation can also be applied 
Io the multiple sum in eq. (1.7.4). The result is that

n-l
S(n,n-!)„<„_!> = 2(-0fc(k-0!R(n.OlW- (1.7.6)

k = 2 p(k)

To this expression we must now apply A(z?, zz) V(zz, zz - l)p(n_1). In doing so, 
p(n-l)

it is convenient to perform the summation with respect to p(n~ 1) first. This makes it 
possible to use the relation

Vv(/?jn-i)î)(n_1) = V(n,k)pW), (1-7.7)
p(n-l)
(n,n-l)pçn_1y ^<n,k)p(ky

which expresses the fact that if we sum over all two-particle interactions Vlm subject 
to the condition that we only include interactions present in the division (zz, k)p(ky, 
we get the total V(zz, k)p(k). Besides eq. (1.7.7), we need the relation

R(n,n)V(ji,k)p(kyR(n,k)p{ky = R(n, zz) - R(n, k)p(ky. (1.7.8)
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This yields
X R(n,n)VÇn,n-l)p(n_1)SÇn,n-l)p(n_1) 

p(n-l)

= - R(n, n) V(n, 1 ) R(n, 1) + Jj' X(-1)*(£  -1)! R(n, n) V(n, k)p (k) R(n, k)p w 
k = 2 p(k)

k = 2 p(k) k = 2 p(k)

(1.7.9)

where we recall that it was assumed that n >3. This equation is almost equivalent to 
the desired relation (1.7.2). It only remains to show that

fc = 2 p(k)
R(n,n) = (-l)n(n-1) ! R(n, n) (n>3). (1.7.10)

To check this, we note that p(k) runs through N(n, k) values, N(n, k) denoting the 
number of ways in which n particles can be split into k groups. Hence what we want 
to show is that

(n^3). (1.7.11)
k = 2

Now any division (n,k)pW in which particle n belongs to a group of two or more 
particles can be obtained from a division (n — 1, k)p^ky of the particles 1, 2, . . ., n — 1 
by adding particle n to one of the k groups. And each process of this sort yields a 
(n, k)pW. Furthermore, any division (n, k)pW in which n forms a group by itself is 
obtained if to the corresponding division (n — 1, k - 1 )2?(*_ 1) particle n is added as a 
separate group. Hence

N(n,k) = kN(n-l,k) + N(n-l,k-l) (n>2,k>2). (1.7.12)

From this it follows that

n—l n-1 n-1
1 N(n,k) = 1 -^(-l)fcÀ’!ïV(n-l,À’)-^ (-1 )*(Å- 1 )! N(n-l,k-l)

k = 2 k = 2 * = 2

= 1 -(-l)n_1(n -1)! A(n — 1, n — 1) - 1 ! 2V(n - 1, 1) = (-l)”(n - 1)! (n> 3),
(1.7.13)

as we wanted to show.
Starting from the assumption that for n — l particles eq. (1.7.2) had been estab

lished by combining various resolvent equations of the form (1.7.3), we have now 
shown that eq. (1.7.2) also holds true for n particles. In the course of the proof, we 
only had to combine the sets of resolvent equations (1.7.5) and (1.7.8). Hence what 
applied to n - 1 before the proof has now been carried over to n, and we can proceed 
to n + 1.
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1.7.2. Auxiliary formulas

The reason for using the complicated resolvent equation (1.7.2) is that the operator 
which on its right-hand side acts on R(n, 1) belongs to $J2. As a matter of fact, it is 
discussed in section 1.7.4 that even each separate term in the multiple sum belongs 
to il2. However, before passing on to this point it is useful to start with a few auxiliary 
formulas.

The first of these concerns the result due to Kato(5) that there are positive con
stants a and ß such that for every /in T(/70)

y iiu/ii <«iiw0/-||+/?ii/-||,
i<j

(1.7.14)

where we may choose a as small as we like. From eq. (1.7.14) it follows in particular 
that

11 V/loO) /11 5 a 11 7?0 (A)/■ 11 +11710 (A)/■ 11

a I A I + ßR0^)f\\ + ß\\R0(l)f\\< a + -L-4^
L (Im|/Â)2

II/ÏI.
(1.7.15)

Hence if 7. is negative and sufficiently small, the norm || VR0(Å) || is less than 1. 
Then the series for (g, R(Å)f) in eq. (1.3.49) is convergent, so that the spectrum of 
H is bounded below. This argument applies to any number of particles.

We know from eq. (1.2.9) that R(k)f belongs to T(//o) for every /in £2. Also,

i<j

so that by Minkowski’s inequality

(1.7.16)

l|770R(A)/-||5Z ||VOR(A)/-|| + |Â| 11R^\f\\ + II/ÏI £ « || H0/i(A)/-|| +
i< j

/?+RI-----  + 1
[Im |/(2-zl)]2

ll/IL (1.7.17)

A being the lower bound of the spectrum of H. 
oc H H0R(Å) f H from both sides of eq. (1.7.17),

If we now choose a<l and subtract 
we find with eq. (1.7.14) that

i<j

a.
1 — a

JLidAL
[Im/U-M)]2

+ 1 11/11 + 7------ 777---- 777a[Im |/(Â - A)]2
(1.7.18)

From this it follows that the norm || V^7?(2) || is uniformly bounded in any region 

0 < £ 5 | Â — zl |, 0 < <5 < arg(2-zl)£ 2?r — <5. (1.7.19)

This is the required result.
For the following we also need several formulas concerning resolvents of the 

type R(n, k)p^ky. Let us assume in particular that k = 2. Then the simplest situation 
arises if the division (n, 2)p(2> consists of a group of n — 1 particles plus a single 
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particle. In that case it is convenient to choose n-2 coordinates x for the internal 
motion of the n — 1 particles, plus a coordinate x3 for the distance between the last 
particle and the centre of mass of the previous ones. If the groups consist of and 
n2 particles with n±>2, nz>2, we use internal coordinates xt and x2 within the re
spective groups, plus a coordinate x3 for the distance between the centres of mass of 
the groups. In the following we mainly concentrate on the latter case.

For discussing the total Hamiltonian H(n, 2}p^, we have to consider the Hamil
tonians II(xA), H(x2), and H0(x3) for the internal motion of the groups and their 
relative motion, respectively. In the first instance, these are defined as self-adjoint 
operators in the spaces £2(x2), and £2(x3). It was shown by Kato (5) that
the domain of H(x1) consists of all functions /"(Xj) in ß2(x1) for which j kx |2 
belongs to £2(Zq), /' being the Fourier transform of f. With Kato’s result, it is not 
difficult to sec that HÇx^) can also be considered as a self-adjoint operator in the 
space £2(x-l, x2, x3), its domain being the set of functions /‘(x1,x2,x3) for which 
I ki I2 f(ki> ^2 ^3) belongs to ß2(Ä1, k2, fc3). And similarly for //(x2) and H0(x3). 
With this interpretation of the Hamiltonians, we have

h(/?>2)p(2)=//(xi>x2’x3) = H(xi) + H(* 2) + ^0(^3) • (1.7.20)

Likewise, we can consider the operator H (xx) + H(x2), say in the space S2(x1,x2). 
It is of a slightly different structure from the Hamiltonians considered thus far, in 
that it is not cpiite the Hamiltonian of a system of particles with two-body interactions. 
But by Kato’s(5) results, it is self-adjoint all the same. Also, it satisfies the crucial 
relations (1.2.9) and (1.7.14). From this it is easily deduced that the spectrum of 
H(xû + H(x2) is bounded below, and that there is a resolvent R(xlt x2; Â) such that 
all the operators of the form Vij(x1) R(xlf x2; A) or VÏJ(x2) 7?(x15 x2; Â) are regular 
and bounded uniformly in A in a region of the form (1.7.19).

According to eq. (1.5.4), the resolvent R(x}, x2; A) satisfies

It is convenient to denote this relationship by

R(x1, x2) = R(x1) * R(x2). (1.7.22)

With this notation we have

[7?(x1)*A( x2)] *Zi 0(x3) = 7?(x1)*[7?(x 2)*fi 0(x3)]. (1.7.23)

For either side yields the resolvent of H(x1, x2, x3), which is unique. Hence omitting 
the square brackets we may write

/?(/b2)j0(2)=^(xnx2-x3) = Ä(Xi)*ß(x 2)*Ä 0(x3).
Mat.Fya.Skr.Dan.Vid.Selsk. 2, no.8.

(1.7.24)
4
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It is not difficult to see that in the case of a general division (n,k)p(k) this result can 
be extended by introducing k sets of internal coordinates for the motion within the k 
groups, x1,x2, . . .,xk, plus a set of Å’-l three-dimensional coordinates for the re
lative motion of the groups with respect to each other, xfc + 1, . . ., x2fc_1. As a gener
alization of eq. (1.7.24) this yields

%*W) EÄ(Xi, ••• >xk>xk+i’ --->x2k-i) = ^(xj*.  • -*̂(^) *̂0(^+1) * --* 7?o(x2*- i)- (1-7.25)

It can be shown with the methods outlined in section 1.3.3 and at the beginning of the 
present section that all operators V^B(n, Å’)p(jfc) are regular and uniformly bounded 
in regions of the form (1.7.19). The same applies to operators such as

vu(xû7î(xi)*-  • •*̂(x Ä.)*7? 0(xp)*-  • -* 7?o(x?) 
(/ = 1, 2, . . . , k; k + 1 < p, . . . , q < 2k - 1 ).

We now want to consider operators of the form

Q = [R„(x) *R(y)]  V(x) [/(„(x) * R(y)], (1.7.27)

where Ra, Rb, and R may or may not be different resolvents. It is essential that 
both operators R(y) are the same. Also, || V(x) Rp(x) || (p = a, b) must be bounded 
uniformly in a region of the form (1.7.19) and || V(x) [Rp(x)*R(y)]  || must be 
bounded. It is assumed that the respective spectra are bounded below, their lower 
bounds being denoted by Aa, Ab, and A.

Writing out eq. (1.7.27) and using eq. (1.2.11), we get

Gb Q /) = - tM dr^(x> yR Rb(x; T) ^(^ ; / - r) F(x) Ra(x; or) R(y ; A - or) /’(x, y))
4tï >'c »-d

= “ / 2 V7 Hb(x;r) v(x)Ra(.x> °0 lR(y ; z - t) - 7?(y ; A- a)] f (x,y)).
(1.7.28)

At this point it is convenient to choose as the contours C and 1) the straight lines

or = — So (— CO < s < co),

T = — /0 ( — co < / < co),
(1.7.29)

where we must make sure that

— s0</la, -/0<zl&, ()<ô<ip<n-ô. (1.7.30)

It is obvious that in choosing ip we must also take into account the location of the 
singularities of /?(y;A-o-) and 7?(y;A-r). Furthermore, we take -t0<-sQ, so that 
the contour D is on the left of C.
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It is now easy to evaluate the term on the right-hand side of eq. (1.7.28) which 
involves 7?(j/;2-(t). For the function

(x,y) = V(x)Ra(x;(j)R(y;Å-a)f(x,y) (1.731)

does not depend on r and it belongs to £2(x, j). Hence if we consider the expression

-^(ø(x> y\Rb(x'><)Kx>y))> 
t’ n U - T

(1.7.32)

we see that its integrand is a regular function of r in the half-plane on the left of D. 
Since in this half-plane the integrand tends to zero faster than 1/| r | when | t | tends 
to oo, it follows that the integral (1.7.32) vanishes.

To evaluate the remaining term in eq. (1.7.28), we want to invert the order of 
integration. Performing the integration with respect to a first, we get a contributon 
from the pole a = r on the left of C. Hence in the abbreviated notation (1.7.22), the 
final result takes the form

[/?„(«)*«(>•)]  V(x) [/}„(«) *«(.?)]  = [ß6(«)V(x)7?.(x)] .R(y), (1.7.33)

It remains to justify the inversion of the order of integration. To check this, we 
observe that on D the norm || V(x) Rb(x-, r) || is bounded uniformly in r, by assump
tion. Furthermore,

II Ba(x; <r) H < 1
[Im |/(a -Aa)]2

||R(y;A-r)||s
1

[Im |/(Â-r -Z)]2
(1.7.34)

Hence to be able to apply the theorem on the inversion of Riemann integrals (Titcii- 
marsii(15) section 1.85) it suffices to show that

I = \ds\dt----- —- ------- ------------ - --------------------- -
J-oo I cr — T I [Im j/(cr ~ Aa)]2 [Imj/(Â-t -Z)]2

(1.7.35)

and that the integrals

1
I or - T I

— dt,
[Im |/(A-r-Z)l2

[Im|/(ff-Za)]2

(1.7.36)

converge uniformly with respect to s and t, respectively.
4*
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As for I, it follows from Holder’s inequality that

7<_ ds \ (I t ---- ------
-x.’-x |<7-t|5 [Im |/(cr —/la)]3_

1
t 12 [Im |/(Â — T — -/l)]3

\ ds \ dt -----------
J-oo.Lx [Im |/(cr -Aa)]3 [Im p(Â - r-Z)]3

(1.7.37)

Now it is easily checked that \ | cr —r dt is bounded uniformly in s. Also 
*_x\ [Im |/(cr - /la)]~3 ds is convergent by the argument presented in section 1.6.2.

• — 00

Hence the first factor in eq. (1.7.37) is finite, and similarly for the remaining factors. 
Hence eq. (1.7.35) is satisfied.

In connection with It we have

1
[Im |/(cr-Za)]2

(1.7.38)
r i rx i
\ „ \ 4

. J-X 1 O’ - T 1“ •V [Im l/(<7 -zla)]4 J

which clearly demonstrates the required uniform convergence. This completes the 
proof of eq. (1.7.33).

The proof of eq. (1.7.33) can easily be extended to show that

[7?c(x)*7? ff(j)] V(x){ [Rb(x)V{x')Ra(x)] *[7? ?(j>) V(_y)7?p( j)] ) 

= [7?c(x)V(x)7?6(x)V(x)Z?a(x)]*[7? ff(^)V(j)Z?3,(y)],

and similarly for more complicated cases. The essential point about eq. (1.7.39) is 
that it contains a product 7?ff(j) 7?ff(^) which is reduced to a single factor Rq(y). 
In the course of the proof, it must be assumed that various operators of the form V R 
are suitably bounded. It is not difficult to see that this condition is fulfilled in all 
cases in which eq. (1.7.39) is used in the next section.

1.7.3. An analysis of the multiple sum
We are now in a position to study the operator which on the right-hand side of 

eq. (1.7.2) acts on R(n, 1). Let us choose a particular term of the multiple sum. 
This is characterized by a certain set p(n - 1), p(n - 2), . . ., p(2). Let us further 
assume that the division (n, 2)p(2) in question consists of two groups of at least two 
particles each. Then it is convenient to use internal coordinates xr and x2 and a re
lative coordinate x3 as in section 1.7.2. With this choice of coordinates, eqs. (1.7.22) 
and (1.7.24) show that

B(n,2)p{2) — ^(x^ x2) * 7?0(x3). (1.7.40)
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Since in the expression we are considering (n, 3)^^ c (n, 2)p(2)> the operator R(n, 3)p(3) 
[V(n, 2)p(2)- V(n, 3)^^] which acts on R(n, 2)j,(2) refers to a further splitting of the 
two groups of particles. It docs not change the situation with respect to x3. Hence 
the function V(n, 2)p(2)- V(n, 3)p^ depends on x1, x2 but not on x3, and we have 
essentially

^(n’[ V(n,2)p(2) — V(n, 3)p(3}] = [/f(x1, x2)*/? 0(x3)] I (x1} x2), (1.7.41)

where R(xlf x2) is some resolvent, not the same as in ecp (1.7.40). Since the operators 
/?0(x3) in eqs. (1.7.40) and (1.7.41) are the same, viz. the resolvent for two particles 
without interaction, we can apply eq. (1.7.33) with the result that

0 = ^(7?, 3)^(3) [V(n, 2)^(2)-V(n, 3)2(3)] Ä(n, 2)^(2) |
i (■•/.42) 

[/?(x1,x2)V(x1,x2)/?(x1,x2)] */? 0(x3). J

With the help of eq. (1.7.39) the argument can be extended to the remaining factors 
in eq. (1.7.2). In the present symbolic notation this finally yields

(-l)ra-1/V(n, n)V(n, n-l)2(n_i)...^(nJ2)2(2) ]
( (1./.4Ö}

- [(-l)”/?^, x2) V(xj, x2) . . . 7?(x1,x2)] *7? 0(x3). I

We must now analyse the term in square brackets in eq. (1.7.43). Since each 
resolvent 7?(x1,x2) refers to a system split into groups of particles with coordinates 
x1 and x2, respectively, it can be written in the form of a convolution according to 
eq. (1.7.22). In particular, if in the division (n,2) there are n1 particles with 
coordinates xx, and n2 particles with coordinates x2, then the factor 7?(xx, x2) which 
derives from R(n, 2)2(2) can obtained from a convolution of the resolvents for n1 
and n2 particles with all their interactions. To bring this out in the notation, we write, 
with eq. (1.7.40),

R(n, 2)2(2) = R(xl;n1, l)*R(x 2;n2, l)*/?(x 3; 2, 2), (1.7.44)

where for instance. R(x3; 2, 2) is the resolvent for two particles divided into two groups,
i.e.  two particles without interaction, which acts on functions of x3.

To go over from the division (n, 2)p(2) to (u, 3)p(^ ‘2)p(z), it is necessary
to split one of the two groups into two. Let this be the group of particles. Then the 
division (n, 3)2(3) consists of a group of n2 particles, plus a composite group of zq 
particles which itself consists of two subgroups according to a certain splitting (zq, 2)?(2). 
In the notation corresponding to eq. (1.7.44), this can be denoted by

R(n, 3)p(3) = ni> ‘̂ )9(2)* R(x2>n2> l)*«(x 3; 2, 2). (1.7.45)

Also, the interaction \\n,2)p(2) - V(n, 3)p^, which is the interaction between the 
two subgroups, is nothing but V^x-j zq, 1)- V(*q;  n1, 2)ff(2). Hence with eq. (1.7.42), 
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Q = (lK(xx; , 2)^(2)-t: 7?(x2; n2,l)J [ zq, 1) - V(xq; zq, 2)ff(2)] 

X [7?(Xj ; zq, l)*7?(x 2; n2, 1)]} *7?(x 3; 2, 2).

Now wc can again apply eq. (1.7.33), with the result that

Q = {7?(xx; zq, 2)e(2) [ zq, 1 ) -V(x1 ; zq, 2)8{2)] 7?(xx; zq, 1)}

* 7?(x2 ; n2, 1 ) * 7?(x3 ; 2, 2).
II (1.7.47)

The division (n, 4) (4) either implies a further splitting among the zq particles, or it 
splits the group of n2 particles. In either case it can be treated in the same way as 
(zz, 3)„(3j. Similar remarks apply to all further divisions. Since by the lime we have 
reached the division (zz, zz), the two groups we began with arc completely split up 
into single particles, it is not difficult to see that we finally obtain

(- 1)w_17?(z7, zz)V(zz, n . 7?(zz, 2)p(2)

- n1)V(n1, zq l)ffl(W1_n. • • K(zq, 1)]

n2)V(n2’ n2~ 1 )<?,(»,-1) ■ • • O] *̂(2,  2),

(n, n - C (zz, n - 2)p(n_2) C . . . C (zz, 2)p(2),
(7Î1’ nl ~ OÇ1(W1-1) C (/q, Zq - 2)Si(rai_2) C . . . C (zq, 2)^(2), 

(/?2> n2 — C (n2» n2~ 2\2(n2-2) C . . . C (zz2, 2)?2(2)-

(1.7.48)

1.7.4. The kernel
If we compare eqs. (1.7.2) and (1.7.48), we observe that the expressions in square 

brackets on the right-hand side of eq. (1.7.48) are nothing but terms in the multiple 
sums in the equations for 7?(zq, 1) and 7?(zz2, 1). Let us therefore assume that by a 
previous analysis these were shown to be integral operators with kernels of the form

F<’»>(*,j.;A)  = G<’")(«,e;A)G(ra)(z,J-U)dsr (m - ;îl,n2),

where is the Green function corresponding to 7î(zzz, 1) and is a 
longing to £2. Let us also assume that it was established that

||7?(2;zn, 1) || < [Im |/(Â -

I Kjm)(2) I £ const. I 7. - A(m) |w"2 [Im j/(A - Z<m))]“^+l 

where A(m) is the lower bound of the spectrum of H(m, 1). These assumptions are 
in agreement with what we know for m = 2 and zzz = 3. In particular, the bound for 
I I agrees with eqs. (1.3.4) and (1.6.23).

(1.7.49)

kernel be-
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Under the above assumptions we get the equality

^i-Orzqn.-i) • • • ^01’ O]

*[(-l)W’_1^(^2, n2) V(n2, • • • K(n2, 1)] /’)
91 ■ \ d° \ g (x1, x2 ) dx1 dx2^ (x2, y2 ; 2 - u) F^ (x:, jq ; u) l’(yx, j2) dy} dy2

(1.7.51)

for any /' and g in £2(x15 x2). It is now shown first of all that if 2 is inside the com
plex plane cut from /l(ni) + to »,

dx2 ( dyt dy2 [ ( | F^(x2, y2 
•’ L.’c

(1.7.52)

From this it follows with Fubini’s theorem that on the right-hand side of eq. (1.7.51) 
the integration with respect to <7 may be performed first, provided we are willing to 
consider it as a Lebesgue integration. If this is done, we get an expression of the form

- U (xi ’ *2) (/xi dx2 \ [F^l) * F^ (xi >x2’yi>yz^) f(yi > y 2) dyi dy2 . 
♦' J

tq.”-’•q<,"')l(«1.Wi.^)=q,"-’^. q,”■’(*!.  yt; o <i<>-
- 711 *’c

(1.7.53)

If eq. (1.7.52) holds true, the kernel defined in the second line of eq. (1.7.53) belongs 
to S2, its £2-norm not exceeding I.

To prove the assertion (1.7.52), we deduce from eq. (1.7.50) that

1 < const. ( I a -AM |n‘"2 [Im J/(<r-Z(ni))r>ni+' 
Jc

X 12 - o -Am |n‘~2 [ Im |/(2 - a -Z(ns))f %n‘+*dff.

If we now write
= /ei?>

and for the contour C take the straight line

cr = se***?  — I + A<n^ (~co<s<oo),

(1.7.54)

(1.7.55)

(1.7.56)

then the imaginary parts in eq. (1.7.54) take exactly the forms given on the right
hand sides of eq. (1.6.15). With these expressions, it is not difficult to check that

I o - A(ni) I [ Im j/(a -Z(ni))]~2 5 4 (sin i cp (1.7.57)

and that the same bound applies to the corresponding term with 2 — a- In
serting these results in eq. (1.7.54) yields with Holder’s inequality that
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U' (1.7.58)
— OC

1
COS - (p - I15 const/sin~ (p'j 1 , • 2 1 4 n - i,!

~dt,

where we have written 7q + n2 = n. The reasoning applied to eq. (1.6.16) can now 
be used to show that

1 < const. I Â - Z(W1) -Z(nJ |n“3 [Im ]/(Z - zl(W1) -” + 5, ( 1.7.59)

so that eq. (1.7.52) is indeed satisfied.
The conclusion is thus far that if Â is inside the complex plane cut from

to co, the operator on the left-hand side of eq. (1.7.51) is an integral operator which 
in the space S2(x1, x2) belongs to £2. According to eq. (1.7.48), the operator in ques
tion plays a prominent part in the equation for R(n, 1), eq. (1.7.2). To discuss the 
latter equation more fully, particularly the term of the multiple sum we are con
sidering in the present section, we note that the factor V(n, 1) — V(n, 2)p(2) stands 
for the interaction between the groups of ;q and n2 particles which together form 
the division (n, 2)p(2). Consequently, this factor depends in an essential way on the 
distance between the centres of mass of the two groups, which was denoted by x3. 
To bring this out explicitly, we note that since xr describes the internal motion of iq 
particles, it must have iq - 1 three-dimensional components. Let us denote these by 
x1>r (r = 1 , 2, . . ., n1 - 1), and let us denote the components of x2 by x2s (s = 1,2, 
. . ., n2-l). Then if we take into account all the two-particle interactions between 
the two groups considered, we gel

(1.7.60)

with certain coefficients c. The point is now that none of the coefficients vanishes, 
owing to the meaning of the interactions involved in eq. (1.7.60). Hence if either 
side of eq. (1.7.60) is denoted by Vp(xl, x2, x3), it follows that Vp(x1, x2, x3) belongs 
to S2(x3).

Combining this result with eqs. (1.7.48), (1.7.51), (1.7.53), we now consider

(<7,(-l)n 17?(/7, n)F(n, n — .. . 7?(n, 2)J3(2)[V(p,1) -V7(n, 2)^(2)]/’)

- 1 Å* (x2, x2, x3) dxy dx2 dx3 ( [ F^l) * F^] (xx ,x2, ylt y2 ; r)
- I £) J t)

* G(o2) (* 3 > J's ; ~T) ( jt • J's • J's) /( y a > y 2 > J's ) (/yi (/y-> dy3

(1.7.61)

for any / and y in ^2(x1} x2, x3). From eqs. (1.6.10) and (1.7.59), it is clear that

./ - j t)Vv(y)\dr

const. ( |r-/l(ni) /l^l'“-3 [bn j/(r-X(Ws))b5» + 5 [Im (Â-r)]"2 dr. 
•’n

(1.7.62)
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By the method applied to I above, this can be further reduced to

J < const. I Â -Z(W1) -Zl(nî) |n"2 [Im j/(A ~AM -AM)]~ ^ + 2 . (1.7.63)

Hence J is finite if /. is inside the complex plane cut from A^ + A^ni) to 00. Then 
in eq. (1.7.61) the integration with respect to r may be performed first. And if we 
define

Alra) (xi. x2 , x3 > Ai , y2 > y-s ;À)
~ 9^; ’ X2 - Ai, y2 i T) (*3  - A3 : - T) (Ai > A2 » As) , (1.7.64)

it follows that the operator on the left-hand side of eq. (1.7.61) is an integral operator 
with kernel . It belongs to £2, and its £2-norm does not exceed J.

The foregoing analysis applies to all the terms in the multiple sum in eq. (1.7.2) 
for which the division (n, 2)„(2) consists of two groups of at least two particles each. 
In the case of a division into a group of n - 1 particles plus one single particle, we can 
confine ourselves to a set of n-2 internal coordinates x within the large group, plus 
a coordinate x3 for the distance between the centre of mass of this group and the last 
particle. We still want to use eq. (1.7.43), but we may skip equations (1.7.44) to 
(1.7.48) and (1.7.51) to (1.7.59). For it is easily seen that in the simple case in ques
tion the operator in square brackets in eq. (1.7.43) is a term of the multiple sum in 
the equation for 7?(n-l, 1). Hence by assumption it is of the form F^n~1\x,y; Â) 
given by eq. (1.7.49), with and 7?(n-l, 1) satisfying eq. (1.7.50). According 
to this assumption, belongs to £2, and

I G) I < const. I Â-A^-^ |n“3 [Im |/(Â -Zt(”-1))]~2 « + 5. (1.7.65)

The argument applied to eq. (1.7.61) can now be used to show that corresponding 
to eq. (1.7.64) we get a kernel

K(pn) (x, x3, y, y3 ; A) = - _1) (x, y ; r) G^2) (x3, y3 ; I - r) Vp (y, y 3) dr, (1.7.66)

the S2-norm of which does not exceed

J < const. I X -/I*- ”-1) |w_2 [Im |/(A — zl^n_1^)]-tn + 2. (1.7.67)

This is a bound of the same form as eq. (1.7.63), which is thus seen to apply to all 
the terms in the multiple sum of eq. (1.7.2).

The general result is therefore that the resolvent equation for n particles is equiva
lent to an equation of the form
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h (x; Z; 7i,l ) y(-l)Å:(Å'-l)!/)(x;Å;/;,Å-)p(A.) + ( y;X)h(y; Å;n,l)dy,
k = 2 j)(*)=l  * V

h(x;Å; n, k)pW = K(x;Å; n, k)pW f(x),
(1.7.68)

where x now stands for all the space coordinates. If for in particles (zn = 2, 3, . . ., 77 - 1) 
the kernels K^m} and the Green function G'(w) are known, the kernels in eq. (1.7.68) 
can he found with convolutions according to eqs. (1.7.49), (1.7.53), and (1.7.64), cq. 
(1.7.66). All the functions h(x; 2; n, k)pW with 7c >2 can likewise be obtained from 
the Green functions for less than n particles. For it follows directly from eq. (1.7.25) 
that the inner product (</, R(n, k)p^ky f) can be evaluated by convolutions, and the 
argument used to get eq. (1.5.21) shows that this result can be carried over to the 
function 7?(77, k)p(k) f itself. Hence eq. (1.7.68) can be considered as an integral 
equation for the unknown function h(x; Å; n, 1). And since its kernel belongs to 
£2, it can be solved and further analysed by the methods outlined in section 1.3.

It is obvious that in doing so we have to confine ourselves to the 2-plane cut from 
a suitable point d/(n) to 00. For in constructing the various kernels K(p\ we had to 
observe cuts from /ßWi) +/l(w4 t0 °c, or from A(n~1) to®. And the convolutions by 
which we want to tind (he functions R(n, k)p^ky / with Å’>2 necessitate similar cuts. 
Now the spectrum of H(n, 1) has a lower bound, say Zl(n). It is discussed in section 
1.7.6 that this does not exceed 7l/(n). In particular,

/i(n)<4(n1) + yl(na) (^4.^ = ^), /[(«)< ^-D. (1.7.69)

Hence according to eqs. (1.7.63), (1.7.67) and (1.4.36),

I I < const. I Å - A(n) 2 [Im ]/(A+ *,
P (1.7.70)

||7?(A; 77, 1) H < [Im |/(A-^1(W>)]-2,

which is of exactly the same form as the assumed relations (1.7.50).

1.7.5. The Green function
It is the purpose of the present section to show that there is a Green function 

GM = G(n, 1) such that for every f in £2

7?(x; 2; n, 1) /’(x) = ( G(w)(x, y X) f (y) dy. (1.7.71)
•J

Since the kernel of the resolvent equation belongs to £2, it follows from the analysis 
used to obtain eq. (1.3.11) that to prove eq. (1.7.71), it is sufficient to show that there 
are Green functions for all the resolvents 77(7?, k}p^ with 7c?i2, and to check that 
these satisfy symmetry relations analogous to eqs. (1.5.46) and (1.5.47).
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To find an expression for the Green functions in question, we rewrite the resolvent 
equation in the symbolic form

R(n, 1) = cfc7?(zz1 , 1) * Ii(zz2, 1) *•  • • 1) *-R 0*.  • • *̂o  + K^R(n, 1 ), (1.7.72)

where for the known resolvents R(n, k)pW with k>2 we have used eq. (1.7.25). 
The ck are certain constants, the summation is to be taken with respect to all possible 
divisions. It is obvious that in eq. (1.7.72) zq<zz-l (z = 1, 2, . . ., Ä’).

Let us now replace all the resolvents B(zq, 1) in eq. (1.7.72) by the right-hand 
sides of their resolvent equations. This yields a multiple sum a typical term of which 
is of the form

[KMR(nlt 1)] * [KMR(n2, 1)] *R(n p, 1)*.  . .*R(n q, 1) *7? 0*.  . .*7? 0. (1.7.73)

It contains a certain number, possibly 0, factors of the form KR, several factors R, 
and several factors 7?0. In the factors R we have np, . . ., nq<n-2. To reduce the 
expression (1.7.73) further, we now replace the resolvents R(np, 1), . . ., R(nq) 1) 
by the right-hand sides of their resolvent equations, and so on. In this way we finally 
obtain a multiple sum consisting of terms of the form

[^^(zq, 1)] *[K (nj)J?(n2, 1)]*.  . .*[WB(zq,l)]*Z? 0*.  . ,*R 0. (1.7.74)

Here the convolutions may be performed in any desired order. For it was pointed out 
already in eq. (1.7.23) that this may be done in the case of three or more resolvents. 
And according to the resolvent equation, the quantities K^ R(nit 1) are nothing but 
sums of resolvents.

Let us therefore begin with the multiple convolution Ro*.  ■ . */? 0. According to 
eqs. (1.5.27) and (1.2.17), this yields a certain Hankel function,

Go (.xj+1 ’ yj+i ’
z
4

n'—_j/2

2?r| + + 1 I.
(1.7.75)

where the number of dimensions of Xj + 1 and J^+1 is 3zi'-3. Obviously n'<n, the 
sign of equality applying only if there are no factors KR.

As for the operators KR, we assume as before that these are integral operators 
with kernels of the form F satisfying eqs. (1.7.49) and (1.7.50). If in general

/<<»«> /i(n„l) f(xt) -yt-, Z) f(yi) dyt. (1.7.76)

where in the space 22(x()

I /?(ni)G) const. p"2 [Im j/(Â - «i+B, (1.7.77)



56 Nr. 8

then it follows immediately from the reasoning developed in the previous section 
that (AT?) * (AT?) is an integral operator,

( /?(/>,. 1)] * 1 )]} /(x(,x;)

* \ (Xi.xj, yf,yt;A) f(yt, y,) dy< dyt,

where now in the space £2(Xj, x;-) 

| [//K*  *F (nP] (Â) |x x.< const. 12 - A(ni)-A(nj) |ni+«r3 [Im ]/(À -A(ni)-A(nj))]-Kni+n)) + s. (i .7.79)

This result can easily be extended to

{[Æ<-’Â(ni, - . ,,x;) I
'  , (1.7.80)

\ [FM . *F (n^] (xltx2,.. .,xjt ylf y2,... ,yf; Â)/'(y1,y2,... ,jø dyx dy2... dypl

the norm of the integral kernel satisfying

I ». . .*F<»P](A)| X„,.......,X}

«const. I A- rim n" = 2?n(.

To establish that the operator (1.7.74) is an integral operator, it remains to investi
gate

I = 1 dx1 . .. dxj dx]+\dyx . . . dyj dyJ+1 | g(xx, . ..,xjf x;+1) 
“%’C- •’ •’ (1.7.82)

. .:::F(nP](x1,...,x;,^1,...,y;;n)G(()rt/)(x7. + 1,y; + 1;A-cr) f (y^ ■ ■ ■ , yJ+1)\]

For this we note that

rfr5|A|e‘'-3(Inip)! |

< const. I214 n> 2(Im|/Â) 2n' + 1,

(zr Im |/2)Hn' 2 dr
(1.7.83)

where the first inequality follows from an integral representation of the Hankel func
tion (Watson(19) section 6.12), and the second one from evaluating the integral in 
the second member. With a change of variables as was made in eq. (1.5.34), it is 
now readily seen that

/5_ const. \ do I (J
• c

[lm i/(o-Z^(ni))]^n" + lJ
i = l i = l

X |A-<7|O'H[Im |/(A-<t)]-s»'+1 II g || || f||,
(1.7.84)
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which is finite provided C is a suitable contour and 2 is inside the complex plane cut 
fromy^idW to oo. Under these circumstances, the operator (1.7.74) can be written 
as an integral operator the kernel of which is of the form

A [F(w,) *.  • .*F (wP](x1}. . . ,x;,yr,. . ., y}- a) Gjjw/)(x/+1, jq+i; Â -<r) da. (1.7.85) 

Since for A >2 the resolvents F(n, k)p^ are linear combinations of operators of the 
form (1.7.74), it follows that there are Green functions G(n, k)p(k) which are linear 
combinations of functions of the form (1.7.85).

It is not difficult to see that the kernel given by eq. (1.7.85) depends only on 
xq, . . .,xj,y1, . . .,yj} and x; + 1-y; + 1. It satisfies

(1.7.86)

This is a situation analogous to the one discussed in section 1.5.3. With the methods 
outlined there, it is easily shown that the operator (1.7.74) can be written as an inte
gral operator with a kernel satisfying eq. (1.7.86) in only one way. In this sense the 
kernel (1.7.85) is unique. Since the Green functions G(n, A)p(Ä.) with A >2 are linear 
combinations of functions of the form (1.7.85), they are likewise unique.

I f for in = 2 , 3n - 1 the Green functions G (in, A)9(jfc) (A = 1 , 2, . . ., in) 
satisfy symmetry relations of the forms (1.5.46) and (1.5.47), then so do the functions 
p(m) py the resoivent equation. With the argument used to get eqs. (1.5.46) and 
(1.5.47), it is then easily checked that similar symmetry relations apply to the func
tions G(n, k)p^ (k>2). At this point the fact that the kernel lAn^ belongs to S2 can 
be used to show that there is a Green function G'w)=G(n, 1) (cf. the proof of eq. 
(1.3.11)). Also, since the operator 7?(n, 1) belongs lo £2, its kernel is unique among 
all kernels in £2. By the resolvent equation and the uniqueness of the functions 
G(n, k)p^k-)(k>2), this means that G(n) is unique in the sense that it can be written 
as a linear combination of functions with suitable integrability properties in only 
one way. It follows with the method of section 1.3.2 that G(w) also satisfies symmetry 
relations.

1.7.6. The spectrum

We conclude the present investigation with some general remarks on the spectrum 
of the Hamiltonian H(n, 1). It was assumed in eqs. (1.7.49) and (1.7.50) that for 
m = 2, 3n - 1 we know the kernels and the Green functions G(m) in the 
A-plane cut from zß7”-* to œ. Under this assumption we are able to evaluate the kernels 

flowever, it follows from eqs. (1.7.63) and (1.7.67) that in doing so we have to 
confine ourselves lo the A-plane cut from min (zl(W1) + A(ns\ A(n~1)) to oo, where the
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minimum is to be taken with respect to all possible divisions of the n particles into 
two groups. Now it will be shown in a forthcoming paper on the theory of scattering 
that there is a continuous spectrum from min (Z(ni) + to °o. From this
it follows immediately that the lower bound of the spectrum of H (n, 1) satisfies

Z(w)<min(Z(ni) + Z(na), A(n~iy) (nr + n2 = n). (1.7.87)

This was already used in eq. (1.7.69).
Let us now consider the convolutions whereby we want to construct the Green 

functions G(n, k)pW with k>2. According to eq. (1.7.84), these give rise to various 
cuts from 5 ^=-,/l(Wi) to œ, where n (2 < nt < n - 1). Now if n"<n-l,
eq. (1.7.87) shows that

min (A(n~1}) < min (A^) <^A(ni\ (1.7.88)
i = i

Also, if n" = n, the sum with respect to i must consist of at least two terms, since 
jqjSn-1. Hence in this case we may write

7-1 j
^(n-nj)+A(nj)<^A(ni)+A(nj) = ^A(n^, (1.7.89)

i = 1 i = 1

where now refers to the particular system of n-nj particles which is obtained
by putting together the groups of n1( n2, . . ., nj_1 particles which appear on the right
hand side of eq. (1.7.89), and taking into account all their interactions. It follows in 
any case that

min (zl(ni)+zl(W2), (1.7.90)
i=i

Hence the cut owing to the kernel contains the cut caused by the construction of the 
Green functions G (n, k)p^ with Å’>2. If we define

A/(w) = min(Z<W1) + Z(na), Z(n_1)) (iq + n2 = n), (1.7.91)

the ultimate cut runs from to ». Now it is clear from the method of evaluating 
the Green function G(n) that H(n, 1) cannot have a continuous spectrum beyond the 
interval [7l/(w),°o). Hence since there is a continuous spectrum from to oo, as 
was remarked above, it follows that the continuous spectrum of H(n, 1) coincides 
with the interval [Af(w\oo). In the 2-plane cut from to æ, there may be a dis
crete spectrum in a finite interval [Z/n\ It is not known if is a point of
accumulation of the discrete spectrum (cf. the discussion al the end of section 1.3.4).

Summarizing, lei us assume that for m = 2, 3, . . ., n — 1 we know the kernels 
and the Green functions G(m) in the 2-plane cut from Zt(w) to®. Let the quantities 

I I and [| A(m, 1) || satisfy the inequalities (1.7.50). Then we can find the ker
nels and the Green functions G (n, k)p (A.) (A.>2) in the 2-plane cut from 
to co. The quantities | | satisfy the inequality (1.7.50). Also, if all the Green func- 
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tions G (in, Å')g(fc) satisfy symmetry relations of the forms (1.5.46) and (1.5.47), then 
so do the functions G(n, k)pW(k>2). Owing to this symmetry combined with the 
fact that each | Kpn} | is finite, we can evaluate the Green function G(n) = G(n, 1) for 
all values of Â not in the spectrum of H (n, 1). In particular, G(w) can be found in the 
2-plane cut from Z(n) to <x>. It satisfies the symmetry relations (1.5.46) and (1.5.47). 
The norm ||7?(n, 1) || satisfies the inequality (1.7.50). We thus see that on the basis 
of our assumptions for m = 2, 3, . . ., n - 1 we can find all the relevant quantities for 
m = n. These satisfy the desired inequalities and symmetry relations. Also, we can 
evaluate the Green function G(2)=G(2,1) from the known functions Ar(2) and G (2,2). 
For m = 2 the inequalities and symmetry relations are satisfied. From this we may 
conclude that by iteration we arc able to construct the Green function G(w) for any 
finite number n.
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